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Abstract

In this thesis, we develop a comprehensive formal model representing the Ethereum
platform in the form of UML class diagrams. Splitting the system into the four parts
“Source”, “EVM”, “Storage”, and “Ledger” helps us to bring a clear structure into this
complex environment. These four parts aim to give a deep understanding of the contract-
programming language Solidity, the underlying Ethereum Virtual Machine, how each node
in the network stores account and state information, and the contents of the blockchain
itself.
Afterwards, we apply our knowledge about the system and explore what data can

be extracted from the Ethereum platform, and how this can be done efficiently. In the
relational database that we build up, we store bytecodes and additional information of all
user- and contract-created smart contracts from the first 6,900,000 blocks.
With this data, we perform different analyses to gain more insights into the system.

The researched anomalies include front-running, self-destructing constructors, and trans-
actions to accounts that only become contracts after the transaction has been executed.
Additionally, we cluster smart contracts based on different criteria, like who created them
and whether they implement ERC token standards. Consulting metadata information,
like references of hard-coded addresses in the bytecode of contracts, the usage of certain
function signature hashes, and the balances of contracts that a contract created, further
refines our system understanding.
The main contribution of this work is the estimation of compiler and Solidity library

versions of arbitrary smart contracts. With two heuristics based on the contract creation
date and the bytecode header, we set a range of minimum and maximum compiler
versions for every contract code. We discover usage of the most popular Solidity library
“SafeMath” by compiling every version of the library with every compatible compiler
version, extracting its internal functions, and comparing the resulting bytecodes with
all contract codes deployed on the blockchain. That also helps us improve the compiler
version estimation.

We evaluate our version estimations with verified contracts from the block explorer
website Etherscan. For our compiler version estimation, the range we set is correct for
99% of the evaluated contract codes. The median size of the estimated compiler version
range is 3. For SafeMath usage detection, we have a success rate of 82% with a median
distance of 4. Despite considering 31 SafeMath versions, the highest library distance our
approach sets for a contract code is only 14.
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1 Introduction

1.1 Motivation

The rate at which a society makes progress is often underestimated. When trying to predict
the future, usually a reference point in the past is taken and then linearly extrapolated.
That intuitive approach severely fails to determine a realistic view of the future. In
his essay, “The law of accelerating returns” [1] futurist Ray Kurzweil describes a more
accurate way to look at the future, the “historical exponential view”. He points out that
for many fields technological change is exponential and even the rate of growth is itself
growing exponentially. It is important to note that this double exponential growth has
been there from the very beginning of technology. When a specific paradigm providing
exponential growth is at its maximum potential, a paradigm shift happens, which allows
the exponential growth to continue. This statement can be applied to many different
technological and biological developments, including the exchange of goods.

Since early beginnings humans have traded goods one for another. That method is very
basic and its lack of versatility sparked the invention of money. Using widely accepted
currencies meant a big paradigm shift that did not reach its full potential until thousands
of years later. Only with the ascent of banks, a new payment method came into existence.
The paradigm shift is cashless payment allowing people to pay practically anywhere in the
world without having to carry physical money. However, that paradigm once more started
to exhaust its potential, which, this time, is about trust. Banks are central authorities
that must be trusted unconditionally when using a cashless payment system. Until about
ten years ago, if one did not want to trust a third-party intermediary, one could not
use electronic payment and would have to fall back to paper money. Then, in 2008
another paradigm shift happened. With the invention of Bitcoin [2] cashless, trustless
payments became possible. At first, the number of users and transactions in Bitcoin grew
exponentially, just as the law of accelerating returns predicts. However, after a few years
that growth was not sustainable anymore and Bitcoin quickly reached a limit, especially
in terms of the amount of transactions that it can process per day.

The next paradigm shift is towards not just trustless payments, but more sophisticated
contracts. In 2014, with Ethereum the concept of smart contracts was introduced [3].
These programs running on a decentralized “world computer” allow for complex payment
schemes that only require the contractual partners to trust the code that they themselves
can verify. Today, Ethereum is the second largest cryptocurrency by market capitalization
at currently about 12 billion dollars1. The Ethereum network currently processes twice as

1https://coinmarketcap.com/coins/
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1 Introduction

many transactions per day as Bitcoin2.
Although Ethereum is such an established cryptocurrency by now, we still lack a deep

understanding of what exactly is happening in the network. Even for such a fundamental
metric like the total number of smart contracts, it is hard to find a reliable, precise, and
current source. More specific questions, like what smart contracts are most often used for,
are still unanswered. To enable a better understanding of the ecosystem we develop a
conceptual model of the Ethereum platform, which aims to provide a complete, in-depth
overview of the system. Then, we leverage this model to analyze a variety of different
aspects of the Ethereum platform. Throughout this thesis, we explore the potential of
this most recent paradigm in the field of payment methods.

1.2 Research Questions

We identify the following five research questions (RQ) to cover during this thesis:

RQ1 – How are the different parts of the Ethereum system correlated with each other?
We are looking for a way to bring structure into the complex Ethereum platform. The
system can be divided into four distinct parts: “Source”, “EVM”, “Storage”, and “Ledger”.
Each part is self-contained and exposes relations to the other parts. When developing our
model in chapter 4, we create one UML class diagram for each of the four parts and
highlight how these correlate with each other.

RQ2 – What data can be extracted from the blockchain for analysis and how can this
be done efficiently?
A crucial requirement for our analysis of the Ethereum blockchain is data acquisition. We
investigate what data we can collect from the blockchain and from other relevant sources.
That data should then be stored in a permanent way to make analyses on the data fast
and reproducible. An important aspect here is efficiency of the data storage, both in
terms of accumulating and requesting data.

RQ3 – What does metadata tell us about the network?
Metadata information gives more insight into smart contracts and the general usage of
the Ethereum system. We examine several pieces of metadata information, like what
addresses are referenced most often from smart contract bytecode. Most importantly,
however, our goal is to give an estimation of the compiler version that was used to
compile a smart contract, solely by looking at the bytecode. Further, we research whether
libraries were used in the contract code.

RQ4 – What are different areas of application of the Ethereum blockchain?
In order to get a complete picture of the Ethereum platform, we research real-world use

2https://coinmetrics.io/charts/#assets=eth,btc_left=txCount
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cases. Our focus is on implementations of token standards and their development over
time. Additionally, we inspect smart contracts whose code is replicated on the blockchain
most often and examine their purpose in detail.

RQ5 – Which anomalies can be observed in the network?
Besides looking at the normal behavior of the system, we also investigate unusual behavior.
Sometimes, relevant events are not the ones that happen regularly, but only occasionally.
We detect such behavior and analyze why it happens. One example of an anomaly is
front-running.

1.3 Approach

For our research, we follow the Design Science Research (DSR) methodology. This
approach is described by Hevner et al. [4] with seven guidelines that need to be followed.
First of all, our thesis produces an artifact in form of a model of the Ethereum system.
In section 1.1, we showed why this topic is important and relevant. We demonstrate the
utility of our artifact by applying the model to the Ethereum blockchain and creating
analyses on real-world data, which we later on evaluate based on a data set of verified
contracts. All of our contributions to the design artifact are verifiable as we precisely
record our rigorous methods for creating the model, our analyses, and the evaluation. This,
as well as our search process in form of an extensive literature review is communicated in
the present thesis.

1.4 Outline

The rest of this thesis is structured as follows. In chapter 2, we define all necessary
fundamental concepts related to blockchain and Ethereum. Chapter 3 gives an extensive
overview of related literature. Next, we present our conceptual model and describe every
one of the four identified parts in detail. In chapter 5, we describe our data acquisition
strategy before we analyze the gathered data in the following chapter. That encompasses
general statistics, detection of anomalies, research about areas of application of the
Ethereum platform, as well as a metadata analysis, including compiler and library version
estimation. We evaluate our main results in chapter 7 and conclude the thesis with a
summary and an outlook in chapter 8.

3





2 Foundations

This chapter gives an overview of some fundamental terms and concepts forming the basis
of our conceptual model of the Ethereum platform that we develop later on. Not only do
we define the underlying principles about blockchain in general, we also have a look at
other distributed ledger technologies, implementations of the Ethereum protocol, and talk
about conceptual modeling in general.

2.1 Cryptographic Basics

Before discussing what a blockchain actually is, we first need to present some basic
cryptographic building blocks upon which blockchains heavily rely on.

2.1.1 Cryptographic Hash Functions

A hash function is a non-injective mapping from inputs of arbitrary size to outputs of
fixed size: h : Xm → Xn. In general, the image of the hash function is much smaller than
the preimage: n < m [5]. Because of that, collisions can occur, meaning that two different
inputs are mapped to the same output value. For most use cases, collisions are usually
bad and a cryptographic hash function is a hash function that fulfills three additional
requirements to make collisions occur less often:

• First pre-image resistance – Given Y in the image of h, it is computationally
infeasible to determine an X, such that h(X) = Y .

• Second pre-image resistance – Given X and h(X), it is computationally infea-
sible to determine a Y 6= X, such that h(Y ) = h(X).

• Collision resistance – It must be computationally infeasible to find two inputs X

and Y with X 6= Y , such that h(X) = h(Y ).

Some well-known cryptographic hash functions are MD5, SHA1, and its successors
SHA2 and SHA3. While the first two are outdated by now and collisions have been found
for them, the latter two are widely used today for all kinds of purposes. For example,
comparing the hash of a downloaded file ensures its integrity. Also, in order not to store
user passwords in clear text, only the hash of the password should be stored, which is
always compared against when a user logs in to the service. And finally, the proof-of-work
algorithm used by many cryptocurrencies heavily relies on finding a certain hash value
(see section 2.2.1).

5



2 Foundations

2.1.2 Public-key Cryptography

Another use case of cryptographic hash functions are digital signatures. These work on the
basis of asymmetric cryptography where there is a public and a private key. The public key
can be shared with anyone and can be used to encrypt messages, while the private key must
be kept secret by the key owner because it is the only way to decrypt messages encrypted
with the public key. The private key can also be used to sign messages. These signatures
can then be verified using the public key. Most digital signature algorithms require
that the message, which should be signed, is hashed beforehand. Then the signature is
calculated only over the fixed-size hash, which is much more efficient than signing the
entire message.
Signatures are important for verifying the authenticity of a message in a network.

Furthermore, the integrity can be assured and the sender cannot claim that they did not
send the message (so-called “non-repudiation”). One very widely spread example for a
public-key cryptography scheme that can also be used for signing is RSA. But there are
also dedicated signing algorithms, like DSA or ECDSA, which have the advantage of much
shorter signatures than RSA at the same level of security.

2.1.3 Merkle Patricia Trees

A Merkle Patricia tree (or short “trie”, originating from the word “retrieval”) is a search
data structure for storing binary data of arbitrary length. Its main purpose is to provide a
single value that represents the entire set of the stored key-value pairs. The data structure
is described formally in the Ethereum yellow paper in appendix D [6] and we only give a
non-formal description here.
Each data element that should be stored is split into small chunks, so-called nibbles,

which are four bits long. That means there are 16 different values that these nibbles can
take. Now the first nibble of all data elements that should be stored is compared and
there are two possibilities: Either the first nibble of all data elements is the same, or
there is at least one difference. If they are the same, the next nibble is compared until a
difference is found. These same nibbles are then combined into a so-called extension node.
If there is a difference, a branch node is inserted that links to new nodes each representing
the next distinct nibble. In total, a branch node can have at most 16 child nodes. Every
data element is then put in the according child branch and the algorithm is performed
again for every branch. Lastly, if for a certain branch there is only one data element left,
a leaf node is inserted, which contains any remaining nibbles of that key and the value
associated with it.
Every node in the trie has a deterministic cryptographic hash value, which is used to

link nodes together. In order to represent the entire trie, the hash of the root node can be
taken because the root node depends on all other nodes in the trie and any modification
in the trie changes the hash of the root node.

6



2.2 Blockchain

2.1.4 Bloom Filter

A bloom filter is a fixed-size bit-array that can be used to check for set membership.
Its usage is often more efficient than comparing all elements one-by-one, but the only
assertion that can be made with absolute certainty is whether an element is not part of
the set.
All of the bits in the bit-array are initially set to 0 at the beginning. Every time an

element is added to the set, multiple hash values are calculated for that element. These
values specify in some deterministic way, which bits to set to 1 in the bloom filter. The
amount of bits to set to 1 is always the same for every element. If a bit has already been
set to 1 beforehand, it remains unchanged.
To check if some element is in the set, one computes the same hash values for that

element. If at least one of these values in the bloom filter is 0, the element is definitely
not part of the set. On the other hand, if all bits of that element are 1 in the bloom filter,
the element is in the set with high probability, but it is not completely certain since there
might be collisions.

2.2 Blockchain

A blockchain is a linked list, whose elements (called blocks) are cryptographically dependent
on their direct ancestors. It can be used to maintain a decentralized digital ledger that is
agreed upon by all peers in a network and cannot be changed retroactively.
Each block typically consists of a block header and a transaction list. The block

header contains the hash of the previous block, a timestamp, and other meta information,
depending on the application. In the transaction list, all the transactions between two
or more parties (called accounts) are stored. A transaction contains information that
updates the ledger, i.e. information about a certain value that is transferred between
accounts. A blockchain can be seen as a state machine and a transaction transitions the
system from one valid state to another.

2.2.1 Consensus Mechanisms

In order to decide who is allowed to append the next block to the chain, a random peer
in the network has to be picked. The consensus mechanism is responsible for this task.
Nodes that are trying to create new blocks are called miners and their incentive to mine
new blocks is usually a block reward, which they get to transfer to a beneficiary of their
choosing when they are the first to mine a new block. There are many different consensus
algorithms, of which the proof-of-work algorithm is the most widely spread one.

• Proof-of-work – To generate a valid block, a certain computationally complex
task has to be solved. Often, this includes finding a value such that a hash over the
block or parts of it (including that value) fulfills a specific requirement, e.g. that
it is lower than some boundary. Verifying that a given solution is correct can be
done in a very short time, but because of the first pre-image resistance property

7
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of the cryptographic hash function, finding a valid solution can only be done by
trial-and-error. More computing power gives a node a higher chance of finding the
solution, mining the block, and ultimately obtaining the block reward. In order to
keep block times constant, the difficulty of the task has to be constantly adjusted,
in relation to the total computing power in the network.

• Proof-of-stake – The idea of the proof-of-stake algorithm is that miners with a
high balance or who are part of the network for a long time have a high incentive
to protect the cryptocurrency from malicious entities. Therefore, everyone in the
network gets to vote on which block to append to the blockchain next, but miners
with a higher “stake” have higher influence.

2.2.2 Bitcoin

The cryptocurrency Bitcoin was first presented in a whitepaper in 2008 by an unknown
person or group under the pseudonym Satoshi Nakamoto [2]. It heavily relies on a
blockchain, which stores all transactions in the network. Shortly after the initial publication,
the reference implementation of the Bitcoin client software was released and blocks were
starting to get mined. In the beginning, there were only few nodes in the network, and
Nakamoto mined about one million bitcoins himself before disappearing [7].

Properties

In the whitepaper, Nakamoto demanded three basic properties that a new digital currency
must have [2]:

• It must be based on mathematical proof instead of trust in order to avoid the
involvement of a trusted third party.

• To protect sellers, it must not be possible to reverse transactions.

• All transaction must be publicly visible so that double spending can be detected by
everyone.

In Bitcoin, a transaction can consist of multiple inputs and outputs. For every trans-
action, the sender has to specify exactly which portion of the total input value should
go to which outputs. However, either all of the balance of the input accounts has to be
transferred to the output accounts or none of it. If someone only wants to send a part of
their bitcoins to someone else, they have to send a transaction that transfers that part
to the other party and simultaneously transfers the remaining coins back to themselves
again. This type of system is called a transaction-based ledger and allows nodes having to
keep track of only these so-called unspent transaction outputs (UTXOs).
Nakamoto set a fixed block size of 1 MB in his original bitcoin client implementation

for unknown reasons. During times of high congestion in the network, not all pending
transactions can be included in a block, temporarily resulting in higher transaction fees.
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Another value Nakamoto had to define when implementing the first client was the block
time. If set too low, the blockchain splits more easily, which happens when two or more
miners manage to mine a new block at the same time. Afterwards, each miner has to
decide which chain to follow and when one chain has a higher block height than the other,
the shorter chain is discarded. Too high block times are an annoyance for sellers because
they have to wait longer until they are sure that the transaction is in the correct chain
and not in a fork. In the end, Nakamoto settled for a very conservative block time of
ten minutes. Decker and Wattenhofer measured the mean block propagation time of the
Bitcoin network with 12.6 seconds. After 40 seconds, 95% of nodes have received the
block [8]. Therefore, Bitcoin’s ten minutes block time could have been easily set much
lower without problems regarding block propagation.

Many of the concepts used by Bitcoin are not new, but the way Bitcoin combines them
is novel. Being the first cryptocurrency, Bitcoin has on the one hand presented features
that are crucial for most cryptocurrencies today, like the concept of a blockchain for
keeping track of a distributed ledger. On the other hand it has shown what design flaws
to avoid, like too high block times and a too low transaction throughput.

Altcoins

After the release of Bitcoin, many alternatives – so-called altcoins – emerged that tried
to fix flaws in the original protocol, or extend it with new features. Altcoins are either
created as entirely new currencies (like Monero) or developed as hard forks of Bitcoin
(like Bitcoin Cash). Litecoin was released in 2011 and focused mainly on shorter block
times, set an increased total number of coins that can be generated, and used a different
hashing algorithm. The Bitcoin Cash hard fork increased the block size from 1 MB to
8 MB and later to 32 MB. Another concern with the original Bitcoin implementation is
privacy because every transaction on the blockchain is public with sender, receiver, and
amount transferred. Monero uses an obfuscated blockchain based on the CryptoNote
protocol [9] to disguise these three fields and make transactions untraceable.

2.2.3 The Second Generation Blockchain

While many altcoins improved some specific property of the original Bitcoin protocol, it
took until 2014 for a fundamentally different approach to come into existence. Vitalik
Buterin proposed a “decentralized application platform” in his whitepaper and called it
Ethereum [3]. His cryptocurrency system not only lowered block times and increased the
amount of transactions that a block can hold, but introduced the concept of a decentralized
computer. This type of system is sometimes referred to as a second generation blockchain
[10].

Properties

Several implications arise from the introduction of a decentralized computer. The first one
is that every active participant in the network must run all instructions of all programs
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that need to be run on the computer. Also, everyone needs to have all of the computer’s
storage stored locally. These implications put a lot of weight on each individual node, but
are necessary to have all operations on this “world computer” fully decentralized.

A transaction in this system is a call to a program on the world computer. In order to
decide which transactions to run, the blockchain consensus algorithm is used. Programs
that run on the blockchain are called smart contracts. Every transaction can call functions,
send money, store and retrieve data, and invoke other calls. Due to the tamper-proof
nature of the blockchain, once deployed, a smart contract cannot be changed retroactively.

This is only a general description of decentralized computers and smart contracts. We
give a more in-depth description of the concrete implementation of these concepts in
Ethereum in chapter 4.

2.2.4 Block Explorers

Running a full node in a blockchain network requires a lot of resources, especially in a
network of a world computer. For Ethereum, a fast network connection and an SSD is
required because classical hard drives cannot keep up with the amount of read and write
operations the node needs to make. When one simply wants to look at a specific block, it
might not be feasible to set up an entire node for that. Instead, there are online services
that allow users to inspect blocks in the web browser. A very popular block explorer for
Ethereum is Etherscan1.

The advantage of block explorers is that they provide fast and easy access to the entire
history of all blockchain data. The user does not need costly hardware and can see a
user-friendly visual representation of the blockchain with blocks, transactions, accounts,
and more. Often, block explorers even provide additional information that a full node
cannot offer just like that. For example, every account page on Etherscan contains a list
of all transactions that this account sent and received. It is not possible to obtain this
information with a standard Ethereum client easily as it requires replaying all transactions
in the blockchain.
Using block explorers comes with some disadvantages as well. As all data is retrieved

from one website, the user heavily relies on information from one centralized instance.
That instance must be trusted when using the service and could potentially give out
information that has been tampered with – either deliberately or because the service was
compromised by a malicious party. Users of block explorers usually do not run the code
to verify its correctness as they would when running a full node. But the entire reason to
use a blockchain in the first place was to avoid the involvement of a trusted third party.
In conclusion, block explorers are a convenient way to look at small amounts of data

on the blockchain quickly, but for any advanced analyses, data of a full node should be
consulted.

1https://etherscan.io
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2.3 Other Distributed Ledger Technologies

Besides using a blockchain, there are other ways to achieve consensus in a distributed
system. In general, a distributed ledger is “a type of database that is spread across
multiple sites, countries, or institutions, and is typically public” [11]. Participants in the
network have to agree upon every record that should be added to that continuous list of
entries. We have a look at two of these distributed ledger technologies in this section.

2.3.1 Directed Acyclic Graph

A directed acyclic graph (DAG) is a data structure consisting of vertices and directed
edges with the constraint that there are no loops (or cycles) in the graph. Serguei Popov
proposed a DAG as an alternative to a blockchain for the cryptocurrency IOTA [12].

In the DAG used by IOTA, which is called tangle, each vertex represents one transaction
in the network and an edge from vertex A to vertex B indicates that the issuer of
transaction A has approved the prior transaction B. Every new transaction must approve
and validate two previous transactions and solve a cryptographic puzzle, similar to the
one used by Bitcoin, to prevent spam. There are multiple categories of puzzles and if
more work has been put into it, a higher weight is assigned to the vertex in the network.

All units of the IOTA cryptocurrency have been created at the genesis transaction, which
all other transactions directly or indirectly approve. That means that no more units can
be created in the future and there is no mining in the network. Despite that, there are two
incentives for nodes to share incoming transactions with the network actively. First, a node
usually wants to share transactions that approve one of their own transactions. Secondly,
nodes in the network drop inactive nodes that do not propagate new transactions.
Because of the asynchronous nature of the tangle, conflicts can occur. If there are

conflicting transactions, the nodes in the network need to decide which transactions
become orphaned meaning that they are not indirectly approved by new transactions
anymore. The exact algorithm that nodes use to resolve conflicts is out of the scope of
this thesis and is covered in [12].

2.3.2 Hashgraph

Another notable distributed ledger technology is the hashgraph [13]. It does not require
proof-of-work, is asynchronous, proven to lead to consensus, and has very high throughput.
The Hedera Hashgraph Platform2 is based on this technology.

The foundation of the hashgraph is a gossip protocol where every node in the network
picks another node at random and tells that node everything they know about the network.
That information is used to build up the hashgraph where each member of the network is
represented by a column of vertices. Every vertex corresponds to an event and the higher
up a vertex is in the column, the more recent the event is. When one member A receives
new gossip from another peer B, this is represented by an edge from the highest vertex in

2https://www.hedera.com/
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B’s column to a new, higher vertex in A’s column. So essentially, all nodes gossip about
who gossiped to whom in what order and that information is stored in the hashgraph.

An event vertex can contain an additional payload, which are transactions that the
corresponding member of the network wants to issue. Consensus is achieved because
everyone in the network has the same hashgraph. It may only differ for very recent events,
but eventually everyone has heard gossip about all events of a certain age. Therefore, with
any deterministic function, every node can calculate the same total order of the events
and double-spending is prevented [13].

2.4 Ethereum Clients

An Ethereum Client implements the Ethereum protocol. There are several implementations
in many different programming languages. The two most widely used clients are Geth
and Parity.

2.4.1 Geth

Geth3 is short for go-ethereum and is developed by the Ethereum foundation. As the name
implies, it is written in Go. With the open-source command-line tool, a full Ethereum node
can be run. Starting the client is done with the command geth console. Afterwards, it
is possible to mine Ether, send transactions, create contracts, and investigate block history.
Especially the latter is interesting for us since our analysis does not require an active
participation in the network. Instead, we passively analyze existing transactions and
smart contracts. Geth provides an interface to query specific values from the blockchain
(see section 2.4.3).

2.4.2 Parity

The Parity Ethereum Client4 has very similar functionality as Geth, but it is written in
Rust. This relatively new systems programming language aims to achieve high performance
and security at the same time. Dr. Gavin Wood, the author of the Ethereum yellow
paper, is co-founder of Parity Technologies, which develops the client.
Rouhani and Deters compared the performance of Geth and Parity on a private

Ethereum blockchain and observed that Parity processes transactions about 90% faster
than Geth [14]. Also, Parity has some advanced features Geth is lacking. Fröwis and
Böhme point out that Parity implements a tracing mode, which can be used to tell whether
a transaction indirectly created another contract [15]. That is useful to find contracts that
were not created by users, but other contracts. However, we show a way to find these
contract-created contracts without the use of the tracing mode later on.

3https://ethereum.github.io/go-ethereum/
4https://www.parity.io/
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In the end, the decision which client to use also depends on personal preferences and
external circumstances. For our analysis, we use the existing Geth client setup provided
to us. It is a fast-synced node with 32,768MB cache.

2.4.3 JSON RPC and IPC

Both Geth and Parity implement the JSON RPC API [16], which can be used to interact
with the blockchain and network from the node. RPC is short for remote procedure call
and allows obtaining and sending information via any transport method, like inter-process
communication (IPC) calls, HTTP, and others.

There are five categories of calls, which are identified by their starting letters:

• web3 – In this category there are two calls: one to get the client version and one to
calculate the Keccak-256 hash of provided data.

• net – Provides information about the network, like which network the client is
listening on (mainnet or one of Ethereum’s test networks).

• eth – This is by far the biggest category and the most relevant for us. It encompasses
all calls that query information about the blockchain, like the current block number
and the hashrate if the node is mining. Moreover, information about certain blocks
(given the number), transactions (given the transaction hash), smart contracts,
and accounts (given the address) can be obtained through calls. For example, the
eth.getCode(address) call returns the smart contract code that is deployed at the
provided address. Furthermore, this category provides calls to compile programs,
estimate gas consumption of transactions, and much more.

• db – This category has calls to directly retrieve and store strings and binary data
in the node’s local database. It is mainly intended for debugging purposes.

• ssh – These are calls to send and retrieve messages through the ssh whisper protocol.
They are of no relevance for our work.

2.5 Conceptual Modeling

According to San José State University professor Jon Pearce, “a conceptual model captures
the important concepts and relationships in some domain” [17]. In his lecture about
Object Oriented Analysis, he demonstrates how Unified Modeling Language (UML) class
diagrams can be used to create a conceptual model. Most fundamentally, every concept
should be modeled as a class and relationships are associations between classes. Multiple
classes can be grouped together into a package if they are related. We use this approach
to design our conceptual model of the Ethereum system in chapter 4.

Evermann evaluated the use of UML class diagrams for conceptual modeling in a study
[18]. The main question of his research is whether UML can be used for conceptual
modeling and how it should be used. Eventually, he derives a set of rules that, if
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followed, make UML diagrams very well suitable for conceptual models. Most importantly,
Evermann states rules that clearly distinguish objects and attributes: an object should be
used to model a substantial entity and attributes should only represent properties of these
entities. These suggestions coincide well with Pearce’s approach. Furthermore, according
to Evermann, classes cannot be solely abstract, but must possess at least one instance.
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In this chapter, we present work related to our research. We identified three broad research
areas that are relevant for our analysis.

3.1 Ethereum

On the Internet, there are several resources that try to illustrate how exactly the Ethereum
platform works. One popular diagram illustrates the formal definitions of the Ethereum
yellow paper [6] in a non-formal visual way [19]. It gives an almost complete picture of all
parts of Ethereum, from mining and the proof-of-work algorithm over a description of the
block contents to the Ethereum Virtual Machine (EVM) execution cycle and the internal
composition of the different trie data structures. The diagram serves as a good starting
point when learning about Ethereum, but it contains some minor inaccuracies, e.g. the
so-called substate is missing the list of touched accounts attribute (see section 4.3.2).
Unfortunately, some of the descriptions are not self-explanatory without the yellow paper.
A more scientific model is EthOn, which is an Ethereum ontology, i.e. a formalization
of concepts and relations within the domain [20]. EthOn gives short definitions for all
terms related to the Ethereum ecosystem and brings them into relation with each other.
These definitions are the basis of several diagrams, which help to visualize certain aspects
of Ethereum. There is an overview diagram, as well as more specific charts that model
blocks, accounts, transactions, and more. This ontology is very well suited to learn how
Ethereum works and to better understand the yellow paper.
Many scientific research papers about Ethereum deal with clustering or labeling of

addresses or contracts. In “Characterizing the ethereum address space” [21], Payette et al.
apply hierarchical clustering, Birch clustering, and the k-means clustering algorithm to
the Ethereum address space. Using the k-means algorithm, they group the address space
into four clusters. The best number of clusters is determined using the Calinski-Harabasz
score, which is higher if the clusters are more distinct. The identified clusters differ in
several properties, like the average amount of Ether an account holds, how many outgoing
transactions there are, and more. The work by Norvill et al. [22] goes in a similar direction,
but they use the affinity propagation and k-medoids clustering algorithms. They download
verified contracts from Etherscan and label them depending on keywords that occur
in the source code. They identify seven clusters, mostly related to the so-called DAO
(decentralized autonomous organization) and gambling.

Several publications have been made about Ponzi schemes. A Ponzi scheme is a type
of investment fraud that promises high return on investment rates, which rely on funds
that come from future investors. This scheme can only be maintained as long as new
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investors can be acquired. When no new investors take part in the fraud, the Ponzi scheme
inevitably collapses. Ponzi schemes can be implemented on the blockchain using smart
contracts. In their paper “Dissecting Ponzi schemes on Ethereum: identification, analysis,
and impact” [23] Bartoletti et al. manually collect 137 Ponzi scheme smart contracts on the
Ethereum blockchain from various sources and then search the rest of the blockchain for
similar contracts. They identify four categories of Ponzi schemes and measure statistics,
like the economic impact, gains and losses, and the lifetimes of these schemes. Chen et al.
[24] build on the work by Bartoletti et al. and create a classification model that detects
Ponzi schemes on the Ethereum blockchain in the moment of their creation. They estimate
that there were more than 400 Ponzi schemes on the Ethereum platform in May 2017.
The classification is based on specific characteristics, like Ether flow and distribution of
the opcodes in the contract.

Other research papers in the field present some statistics about Ethereum. In “Towards
analyzing the complexity landscape of solidity based ethereum smart contracts” [25], Hegedus
downloads verified smart contracts from Etherscan and applies some object-oriented metrics
to the source codes written in the contract-programming language Solidity. Among the
examined metrics are the number of source lines in the contract, number of functions,
weighted complexity of functions, and more. Hegedus concludes that smart contracts are
short and not very complex. In their paper “Analyzing Ethereum’s Contract Topology”
[26], Kiffer et al. go a step further and modify the Geth client to obtain statistics about
all smart contracts that are deployed on the Ethereum blockchain. They state that there
are almost three times more smart contracts created by other contracts than by externally
owned accounts. In addition, their study reveals that only 10% of user-created and 1% of
contract-created contracts are unique.

A popular research field is the development of data extraction and analysis platforms
for Ethereum. The “Ethereum Query Language” (EQL) developed by Bragagnolo et al.
[27] allows users to obtain information directly from the Ethereum blockchain using
SQL-like queries. It is possible to query specific attributes from blocks, transactions,
accounts, and contracts that can be further confined using where- and order-by-clauses.
“Smashing ethereum smart contracts for fun and real profit” [28] introduces the security
analysis tool “Mythrill” for Ethereum. Using symbolic execution, static analysis, and
control-flow-checking, the tool is capable of detecting security vulnerabilities of smart
contracts. Zhou et al. present “Erays” [29], a smart contract reverse engineering tool. It
produces high-level pseudocode from contract bytecode for manual analysis making it
easy to investigate different contract properties, like McCabe code complexity and code
reuse. Also, contracts with no previously available Solidity code can be linked to verified
contracts using Erays. Another security analysis framework for Ethereum smart contracts
is “Vandal” by Brent et al. [30]. It converts bytecode to semantic logic relations and
allows users to write own security analyses in the declarative language Soufflé. These
logical specifications are then transformed into high-performance C++ code, which can be
run against all Ethereum smart contracts to check for contracts where the vulnerability is
present. The authors claim that their tool is faster than other state of the art analysis
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tools, like Mythrill.
In order to prevent bugs, one approach is to apply formal verification to smart contracts.

Bhargavan et al. [31] use the functional programming language F* to verify both the
runtime safety and the functional correctness of smart contracts. They consider a subset
of Solidity and convert both programs of that subset and the bytecode output produced
by the Solidity compiler to F* in order to verify that the two are equivalent. Hirai [32]
formally defines the Ethereum Virtual Machine in Lem, which is an intermediate language
that can be translated into interactive theorem provers like Isabelle/HOL. The author
then uses these definitions to prove several properties of smart contracts, e.g. that a
program always fails on reentrance, which is an important safety measure.

Finally, Chan and Olmsted [33] analyze the Ethereum transaction graph by organizing
all transactions in a graph database. They manage to track transactions from one specific
hack that ended up in known addresses of cryptocurrency exchanges.

3.2 Bitcoin and Other Blockchains

Publications about Bitcoin and other blockchains are also relevant for our research, as
some approaches might be applicable to Ethereum as well. In “Quantitative analysis of
the full bitcoin transaction graph” [34], Ron and Shamir describe how they use Bitcoin
transactions with multiple sending addresses to cluster addresses into entities. They
argue that it is very likely that all sending addresses of a single transaction belong to
the same owner and then compute the transitive closure over the sending addresses of all
transactions. The resulting transaction graph over these entities is much more meaningful
than over just addresses. Then, some statistical properties about the transaction graph
are presented, e.g. the amount of Bitcoin they hold. Fleder et al. [35] go a step further in
their analysis of the transaction graph and additionally try to assign entities to real people
by collecting addresses posted in online forums. Furthermore, they apply the PageRank
algorithm to find central entities.
Another research field of interest is anomaly detection in blockchains. Pham and Lee

apply k-means clustering, Mahalanobis distance, and unsupervised support vector machine
to a subset of the Bitcoin transaction graph in “Anomaly detection in bitcoin network
using unsupervised learning methods” [36]. Using these three methods, they manage to
detect several instances of stolen Bitcoins in the network. Bogner’s paper “Seeing is
understanding: anomaly detection in blockchains with visualized features” [37] presents
the system they built for monitoring the Ethereum blockchain for anomalies. The live
system generates alerts when it detects an anomaly that can then be further investigated
by an expert. A dashboard with relevant information and statistics is presented to the
user to assess the severity of the anomaly.
Kalodner et al. develop the blockchain analytics platform BlockSci [38]. The tool

separates parsing blockchain data and analysis from each other, making it possible to
use data from many blockchains that have a similar format as Bitcoin, e.g. Litecoin,
Dash, and ZCash. However, account-based platforms like Ethereum are not supported.
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BlockSci analyses can be written in Python and C++, and in the paper several analysis
applications are shown. For example, they investigate why some miners do not construct
blocks that maximize their revenues through transaction fees.

3.3 Reverse Engineering

As smart contracts on the blockchain are only available in bytecode form, reverse engi-
neering techniques need to be applied in order to understand the functionality of the code.
While there are not many research papers about reverse engineering smart contracts, blog
posts are a good source of information for this topic. Arvanaghi’s two-part post [39]
gives a good introduction on how to read EVM bytecode. He explains what the most
essential instructions do by going over a sample contract, thereby explaining where to
find initialization, function dispatching, and self-destruction in the contract bytecode and
how exactly each part works.
Sakharov implements an analysis plugin and a debugger for the open-source reverse

engineering framework radare2 [40]. He goes over a simple smart contract instruction by
instruction and explains both the functionality of the program and the usage of radare2.
The tool helps users to read and understand bytecode by formatting the opcodes, adding
instruction offsets, and drawing arrows to where jump instructions jump.
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We present our conceptual model for Ethereum blockchain analytics in this chapter. It is
a comprehensive representation of the whole Ethereum ecosystem and is split into four
parts: Source, EVM, Storage, and Ledger. As our modeling language, we chose UML
class diagrams.

4.1 Overview

Before discussing the four aforementioned parts in detail, we first need to explain some
general mechanisms and principles of the Ethereum platform.

4.1.1 Account Types in Ethereum

In general, we distinguish between two different types of accounts in Ethereum: externally
owned accounts (EOA) and smart contracts [41]. Each account is identified by a 160-bit
long address. In the case of an EOA, this address is defined as the rightmost 160 bits of
the Keccak-256 hash of an ECDSA public key. The private key of the account is used to
sign transactions from that account. A contract account on the other hand cannot make
transactions on its own because it is controlled by code and there is no explicit private
key known for it. The code of a contract is immutable.

4.1.2 Transactions and Messages

Fundamentally speaking, a transaction is a set of signed data with certain contents that
is sent from one externally owned account to another account (EOA or contract) [41]. We
explain the exact fields that a transaction consists of further in section 4.5.2, but basically
a transaction contains the sender, the recipient, how much money to transfer (if any), and
additional data, like which function to call and the arguments.

Contracts cannot initiate transactions on their own, but they can send so-called messages
to other accounts if they receive a transaction or a message from another account. Once
initiated, a message has the same possibilities as a transaction, but it does not explicitly
appear as an entry in a block of the blockchain. It is only implicitly there as a result of a
transaction.

4.1.3 Ether and Gas

Ether (ETH) is the currency of Ethereum. It can be divided into 1018 parts. The smallest
unit is called wei, i.e. 1 ETH = 1018 wei. For every transaction and message, the sender
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can specify the amount of Ether they want to transfer to the recipient.
In order to give miners an incentive to include a transaction in a block, the sender has

to spend some transaction fees. Every code instruction in Ethereum is associated with a
so-called gas value, which specifies how expensive the instruction is. This value is defined
in the yellow paper [6]. For example, a simple ADD instruction costs 3 gas, a more complex
SHA3 instruction costs 30 gas, and a CREATE costs 32,000 gas. Depending on the executed
code, a different amount of gas is consumed. The base fee for a transaction is 21,000 gas,
which is the same amount required for executing a normal transaction from an externally
owned account to another EOA.

The exchange rate between gas and Ether (which is usually referred to as “gas price”)
is set by the sender of the transaction themselves. However, if they set it too low, no
miner will include it in a block because miners naturally prioritize transactions by their
transaction fees. Additionally, the sender specifies a gas limit, which is the maximum
amount of gas units that they are willing to pay. When sending a transaction, the sender
has to pay the product of gas limit and gas price upfront. If the transaction succeeds and
uses less gas than the gas limit, they will get a refund of any remaining gas. But if the
gas limit is set too low and the transaction runs out of gas, they will not get a refund of
their money. This is a mechanism to protect against denial-of-service attacks against the
network where a malicious actor sends a large amount of transactions that all run out
of gas eventually, but consume a lot of computing power. If the attacker was getting a
refund of their transaction fees, they could just run this attack with practically no costs.
Therefore, in the case of such an out-of-gas exception, any modifications made by the
transaction are reverted, but the transaction fees are consumed.

4.1.4 Mining and Consensus

Roughly every twelve to fifteen seconds, a new block is generated and appended to the
Ethereum blockchain [42]. When a miner manages to mine a new block, they get to transfer
a block reward of currently three ETH plus the transaction fees of all the transactions
that they included in the block to a beneficiary address of their choosing. At the time of
writing, Ethereum uses a proof-of-work consensus algorithm, but it is planned to switch
to a proof-of-stake consensus algorithm in the near future [6].
Sometimes two or more nodes manage to mine a new block at the same height. Then

the blockchain splits and each node has to decide on their own, which branch to follow.
After a while, one branch will be longer than the other one and the shorter branch will be
discarded by all nodes. Blocks in the discarded branch are not part of the true blockchain,
but they can be included as so-called ommers1 in another block. In order to reward miners
for ommer blocks, the miner of the ommer will still receive a block reward. However, for
older ommers, they get lower rewards.

1the gender-neutral term for aunt and uncle
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4.2 Source

An integral part of the Ethereum system are smart contracts. This is one of many things
that sets Ethereum apart from Bitcoin and other cryptocurrencies. Being able to deploy
entire programs on the blockchain turned out to be a powerful tool for developers and end
users. However, it is tedious to program smart contracts in the bytecode language of the
Ethereum Virtual Machine that the yellow paper introduces. This is why several high-level
languages exist that compile to EVM code. The most widely used contract-programming
language is Solidity.
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4.2.1 Solidity

On the official GitHub page, Solidity is described as a “statically typed, contract-oriented,
high-level language for implementing smart contracts on the Ethereum platform.” [43]
It is designed to resemble JavaScript and compiles directly to EVM code, which can be
deployed on the blockchain. In the following, we illustrate the different features of the
Solidity language with the help of an abstract UML class diagram (figure 4.1) and a
concrete contract implementation of a simple auction (figure 4.2).

Structure of a Solidity Program

Every Solidity program consists of any number of contracts and libraries. In the end, only
one of the contracts will be deployed on the blockchain, but contracts can inherit from
other contracts within the program. A library is a type of contract that does not have any
storage and whose functions can be reused by calling them from one or more contracts in
the context of the calling contract [44].
Every contract has a name (in our example SolidityExample) and consists of any

number of variables (line 3 – 7 in figure 4.2), events (line 8), modifiers (line 10 – 13), and
functions (line 14 – 47).
A variable consists of a name, type, and access modifier. In Solidity, there are four

different access modifiers:

• public – Accessible from everywhere

• private – Only accessible from inside the current contract

• internal – Only accessible from inside the current contract or from child contracts

• external – Only accessible from outside the current contract, but not by the
contract itself

Functions have a name, an access modifier, statements, and can optionally have function
arguments, function modifiers, and a return value. Function modifiers are special properties
of functions that are either predefined (like payable to indicate that a function can receive
Ether) or defined by the developer (like onlyBy in our example, which ensures that only
a certain address can execute a function).

Two special types of functions exist in Solidity: the constructor (line 14 – 19) and the
fallback function (line 47). The constructor is only executed once when the contract is
deployed and its code can only be found in the contract creation transaction, but it is not
part of the actually deployed code on the blockchain. The fallback function, which has no
functionality in our example (and is only included for demonstration purposes), is called
when no other function matches the four-byte-identifier of the function. This identifier is
also called function signature and is primarily used by the dispatcher.
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1 pragma solidity ^0.4.25;
2 contract SolidityExample {
3 address owner;
4 bool isRunning;
5 uint256 highestBid;
6 address highestBidder;
7 mapping(address => uint256) oldBids;
8 event NewHighestBid(address bidder, uint256 amount);
9

10 modifier onlyBy(address who) {
11 require(msg.sender == who, "not authorized");
12 _;
13 }
14 constructor() public {
15 owner = msg.sender;
16 isRunning = true;
17 highestBid = 0;
18 highestBidder = 0;
19 }
20 function placeBid() public payable {
21 require(isRunning, "auction has already ended");
22 require(msg.value > highestBid, "bid is too low");
23
24 if(highestBid > 0) {
25 oldBids[highestBidder] += highestBid;
26 }
27 highestBid = msg.value;
28 highestBidder = msg.sender;
29 emit NewHighestBid(highestBidder, highestBid);
30 }
31 function withdraw() public {
32 uint256 amount = oldBids[msg.sender];
33 if(amount > 0) {
34 msg.sender.transfer(amount);
35 oldBids[msg.sender] = 0;
36 }
37 }
38 function getOldBidFor(address bidder) public view returns (uint256) {
39 return oldBids[bidder];
40 }
41 function endAuction() public onlyBy(owner) {
42 if(isRunning) {
43 isRunning = false;
44 owner.transfer(highestBid);
45 }
46 }
47 function() public { }
48 }

Figure 4.2: Example of a simple auction in Solidity

Function Dispatching in Solidity

At the beginning of the bytecode of every compiled Solidity program, there is the function
dispatcher, which decides where in the code to jump to in order to execute the correct
function that the user intends to call. For every function in the Solidity source code,
the Keccak-256 hash of the name and parameter types is calculated and the first four
bytes are used as unique identifier. As an example, for the function getOldBidFor(address
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bidder), hashing the string "getOldBidFor(address)" results in the four-byte-identifier
0x433978be.

When making a function call to a Solidity program, the first four bytes of the transaction
input data are interpreted as the four-byte-identifier of the function to call. The dispatcher
compares against the four-byte-identifiers of all public functions in the code and if it
matches one, it jumps to the position where the bytecode for that function is located. If
no match is found, but there is a fallback function, it will jump there. Otherwise, it will
revert the transaction.

The dispatcher does not perform checks that the amount of parameters and their types
of the function that is called is correct. Neither are function modifiers enforced (e.g. with
a check that a function that is not payable does not receive Ether). These checks take
place in the function itself.

Types in Solidity

We distinguish between two different kinds of types in Solidity: data types and object
types. The former are fundamental types like int, bool, but also arrays or mappings
between two types (see for example line 7 in figure 4.1 for a mapping between addresses
and uint256s). The latter are more complex objects with multiple attributes. One
example is the msg object, which contains information about the current message, like the
sender (see line 15) or the amount of transferred Ether (line 27).

Functional Overview of the Auction Contract

Having looked at the structural setup of the auction contract in figure 4.2, we now explain
its actual function. When the contract is deployed on the blockchain, the owner is set
to the contract creator and the auction is started. This happens in the constructor (line
14 – 19). Now anyone can call the placeBid() function (line 20 – 30) and send Ether
to the contract. Within the function, it is checked that the auction has not ended yet
and that the amount of Ether sent with the transaction is higher than the current highest
bid. If both conditions are fulfilled, the account that sent the bid gets set as the new
highest bidder and their bid is stored. Additionally, the former highest bid is stored in
the mapping oldBids and the NewHighestBid event is emitted.
If a bid placed by one account is surpassed by another account, the former account

can withdraw the amount of Ether that they sent to the contract again by calling the
withdraw() function (line 31 – 37). If the oldBids mapping contains a positive number
for the calling account, that amount is transferred to the caller and the value in the
mapping is reset. For any account, the current amount of Ether that can be withdrawn
this way can be seen by calling the getOldBidFor() function (line 38 – 40).
At any time, the contract-creator account can call the endAuction() function (line

41 – 46), which sets the auction to a halt and transfers the current highest bid to the
contract owner. The function modifier onlyBy(owner) enforces that this function can
only be called by the contract-creator.
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The presented contract implements an auction without a trusted third party. It is
decentralized and publicly documented. Only the subject that is bid on needs to be
transferred off-chain.

4.2.2 Other Languages

The de facto standard language for writing smart contracts for the Ethereum platform is
Solidity. However, there are more languages compiling to EVM code. One noteworthy
example is LLL, which “is a low level language similar to Assembly” [45]. It is specifically
designed to be simple and not feature-packed like Solidity. However, for developers who
want to use a high-level language to write smart contracts, LLL is not an adequate choice
because code written in it resembles assembly so much.
Development for LLL started at around the same time as for Solidity, but in the end,

Solidity prevailed. Nowadays it is hard to find even a single smart contract that is not
written in Solidity. This is why we only consider Solidity in this thesis.

4.3 EVM

The Ethereum Virtual Machine (EVM) is a stack-based architecture with 256-bit words.
It is responsible for executing the bytecode that is produced by the Solidity compiler.
All information in this section is derived from the Ethereum yellow paper [6] and all
explanations are based on the class diagram in figure 4.3.

4.3.1 Execution Cycle of EVM Code

When a miner creates a new block they have to execute all the transactions one after
another in the transactions list of that block. Any other node has to do the same thing when
they receive a new block from the network. Every node has to execute every transaction
and keep track of the entire state of the environment. Responsible for executing a single
transaction is the iterator function (see section 9.5 in the yellow paper). It retrieves the
next instruction from the contract bytecode, updates the stack, subtracts the gas used
for that instruction from the max gas value, and finally increments the program counter
(except if the current instruction is a jump instruction, then the program counter is set to
the jump destination). That cycle is repeated until the program halts.
The execution environment contains important properties of the currently executed

transaction (see section 9.3 in the yellow paper). That includes the code owner, the sender
of the transaction, the gas price, the input data, the address that caused the invocation
of the code (which is only different from the sender in case of a message call), the Ether
value passed with this transaction, the message call depth, the current block header, and
the machine code to be executed.
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Figure 4.3: EVM part of the conceptual model

4.3.2 States

Every node in the Ethereum network has to keep track of the entire state of the environment.
The state is split into four parts.

World State and Account State

The world state maps addresses to account states (see section 4.1 in the yellow paper).
For every account (whether it be an externally owned account or a contract), every node
in the network has to keep track of its account state, consisting of the following attributes:

• nonce – For externally owned accounts the nonce represents the number of transac-
tions that were made from this account. If the account is a smart contract, this is
the number of contracts that this contract has created so far.

• balance – How much Ether this account has.

• storage root – The root of a Merkle Patricia tree that contains the entire storage
of this account. In case of a contract that are for example global variables. We
explain how storage in Ethereum works in the next section.
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• code hash – The code hash associated with this account is used to easily look up
the actual code and to not have to store code twice if there are multiple contracts
with the same code.

Machine State

While the world state and account state are continuously updated with every processed
transaction (also across blocks), the machine state (see section 9.4.1 in the yellow paper)
is re-initialized for every new transaction. It contains these variables of the currently
executing transaction: how much gas is left, the program counter, memory contents, how
many words in memory are active, and the stack contents.

Substate

Finally, there is the substate (see section 6.1 in the yellow paper), which contains in-
formation for after the transaction is fully executed. The self-destruct set is a list of
accounts that will be discarded after the transaction, e.g. because a contract executed
the SELFDESTRUCT opcode. Then there is the log series, which is a list of logs that arose
during the transaction and the list of touched accounts, which is necessary in order to
delete empty ones after the transaction. If contract storage is freed during a transaction,
the refund balance is increased. This can only be caused by the SSTORE instruction and
only when the storage is set to zero from a non-zero value. When that happens, the total
transaction execution costs are decreased in the end.

4.4 Storage

As seen in the previous section, every node in the Ethereum network has to maintain a
database of the world state, containing all account states. In this section, we elaborate on
this and on what other data a node needs to store (see figure 4.4).

4.4.1 Tries

Almost all data in the Ethereum system is stored in Merkle Patricia trees (see section
2.1.3). There are four main tries, which nodes of the network have to build up and update
as new blocks are generated.

• State Trie – First of all, there is the state trie, which is a representation of the
world state. It contains all addresses of all accounts and maps them to the account
states. Its current root hash is included in the block header of every block.

• Storage Trie – For every account, there is one storage trie, which contains the
storage contents of this account. Every account state in the world trie contains the
root of the storage trie of this account.
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Figure 4.4: Storage part of the conceptual model

• Transaction Trie – With every new block, a new transaction trie is built up,
containing all the transactions from the block. The root hash is included in the
block header. We elaborate on which elements are part of a transaction in the next
section.

• Transaction Receipt Trie – The transaction receipt trie is almost exactly the
same as the transaction trie, except that it contains the transaction receipts that
every transaction produces. Such a receipt (see section 4.3.1 in the yellow paper)
contains the cumulative gas that all transactions in the block used, up until the
transaction for which the receipt is. Furthermore, a receipt contains the logs that
were created by the transaction, the bloom filter derived from these logs, and the
transaction’s status code.

Logs, in turn consist of the address that created the log, an array of log topics, and
the data of the logs themselves.

4.4.2 Implementation in Geth

Geth uses the database LevelDB2 in order to store all tries that Ethereum requires. On
its official GitHub page, LevelDB is described as “a fast key-value storage library written
at Google that provides an ordered mapping from string keys to string values”. That

2https://github.com/google/leveldb
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makes it easy to look up a specific key, e.g. a code hash, or to iterate over all accounts by
traversing the state trie. However, certain requests, like getting all transactions from one
account, would take a very long time as there is no connection in the database between
accounts and transactions because all data is only stored in form of separate key-value
pairs. For that request, one would have to iterate over all transactions and check if it is
from the target account. This is quite cumbersome, especially if one is interested in the
transactions of many accounts.

4.5 Ledger

The last part of our conceptual model describing the Ethereum system encompasses
everything that is actually on the blockchain itself. A block consists of a block header, a
list of transactions, and a list of ommers. Again, most of the information in this section is
from the yellow paper [6] and is illustrated by the UML class diagram in figure 4.5.

Ledger

Block

BlockHeader

String parentHash
String ommersHash
address beneficiary
String stateRoot
String transactionsRoot
String receiptsRoot
bytes[] logsBloom
int difficulty
int blockNumber
int gasLimit
int gasUsed
String timestamp
byte[] extraData
String mixHash
int nonce

Transaction

int nonce
int gasPrice
int gasLimit
address to
int value
byte[] v
byte[] r
byte[] s
byte[] init
byte[] data

OmmersList

1
*

1

Figure 4.5: Ledger part of the conceptual model

4.5.1 Block Header

These fields are part of the block header of every block (see section 4.3 in the yellow
paper):

• parent hash – This is the Keccak-256 hash of the header of the parent block.

• ommers hash – The Keccak-256 hash of the block’s ommers list (see section 4.5.3).

• beneficiary – The address that receives the block reward and the transactions fees
of this block.
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• state root – The Keccak-256 hash of the root node of the current state trie.

• transactions root – The Keccak-256 hash of the root node of the current transac-
tion trie.

• receipts root – The Keccak-256 hash of the root node of the current transaction
receipt trie.

• logs bloom – The bloom filter of the logs.

• difficulty – The difficulty of the block determines how much computation power is
needed to find a valid nonce for the block.

• block number – A serial number that is incremented for every block.

• gas limit – How much gas all transactions in this block may consume at most.

• gas used – How much gas the transactions in this block actually used.

• timestamp – A timestamp when the block was mined.

• extra data – An additional data field that the miner of the block is free to set
however they want. Some miners use this field to disclose their name or organization
to others in the network.

• mix hash – A hash value that satisfies the difficulty requirements together with
the nonce.

• nonce – A nonce that satisfies the difficulty requirements together with the mix
hash.

4.5.2 Transactions

A transaction (see section 4.2 in the yellow paper) consists of the following fields:

• nonce – A running number that is increased for every transaction that the sender
sends.

• gas price – The price in Ether that the sender is willing to pay per gas unit used.

• gas limit – How much gas this transaction may consume at most.

• to – The address of the recipient.

• value – The amount of Ether that is sent together with this transaction.

• v, r, s – These three values stem from the signature of the transaction and they
can be used to determine the sender.
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• init – This field is only available for contract-creation transactions. It contains
EVM code that initializes the new contract, i.e. it runs the constructor and returns
the contract body that is executed every time there is a call to the new contract.

• data – This field is only available for message call transactions and contains input
data for the called contract, i.e. the function to call and its arguments.

Most blockchain explorers do not distinguish between init and data because they
cannot appear together, so they list it just as one field. But for our model, it is important
to be as exact as possible.

4.5.3 Ommers

The third part of a block is a list of ommers. That list contains the block headers of
the ommer blocks, but not the transactions. Only by being part of an ommer block, a
transaction is not executed, however. A transaction in an ommer block is only executed if
it is included in a normal block.

4.6 Correlations Between the Four Parts

With the in-depth description of the four large parts of the Ethereum platform, we answer
research question 1 (see section 1.2). These parts cannot be discussed completely separated
from each other, as elements of one part have strong connections to another part.
One obvious reference is the translation of a Solidity source code program to machine

code. This translation is done by the compiler and during it, our model transitions from
Source to EVM.
Also, we can see a direct mapping between the EVM part and the Storage part. The

yellow paper demands that every node builds up a world state, which is a mapping between
addresses and account states. It even suggests a concrete implementation for this abstract
data structure: Merkle Patricia trees. That is why the state trie exactly matches the
world state and the storage trie represents the account state.

Finally, the contents of a block, which are modeled in the Ledger part, can be found
throughout the entire model: the execution environment contains the complete present
block header, the transaction trie contains transactions with all their attributes, and a
Solidity program lets the user access certain values from the ledger using the objects msg,
tx, and block.
In conclusion, the parts of this complex system should not be looked at on their own,

but seen as a whole because they are so closely interwoven with each other. For example,
besides understanding how their language works, Solidity programmers should have some
knowledge about how the underlying EVM works, since this is how their code is actually
executed in the end. Similarly, for end users who are using a web frontend of some
distributed application that runs on top of a smart contract, it will be beneficial to look
at the source code and see how the smart contract actually works. These web frontends
often try to encapsulate the users (who might only have a very basic understanding of
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distributed ledger technologies) from the actual code to make the user experience as
non-technical as possible. But by looking at the Solidity code, users can see if it actually
does what the application promises, which is the entire benefit of making an application
distributed.
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This chapter deals with research question 2 (see section 1.2), i.e. what data can be
extracted from the blockchain and how this can be done efficiently.

5.1 Available Data

Our conceptual model from chapter 4 gives us a very good overview of what data can
be extracted from the blockchain. Besides the obvious block headers, transactions, and
ommers that are directly part of the blocks of the blockchain, we can also look at the four
different tries from the Ethereum client to get data from. Furthermore, there is temporary
data that is only available temporarily unless it is stored elsewhere before it is deleted by
the Ethereum client. And lastly, off-chain data can be consulted as well.

5.1.1 Blockchain Data

As in every blockchain, blocks are the most fundamental source of data. Roughly every
fifteen seconds a new block is mined in Ethereum, consisting of a block header, a transaction
list, and an ommer list. The content of these three fields are described in detail in section
4.5.

5.1.2 State Data

Every Ethereum client maintains an internal state from which we can extract data. This
internal state encompasses the state trie, storage tries of every account, transaction trie,
and transaction receipt trie that were described in section 4.4.1.
In order to read the state data, the data structure of the client has to be read. How

this is done exactly follows in section 5.2.2.

5.1.3 Temporary Data

The tries of all Ethereum clients must be synchronized with each other in order for
them to represent one single world state. For every new block, each node updates their
tries. During that update process, data may be deleted. This is especially true for
smart contracts that execute the SELFDESTRUCT opcode. A killed contract cannot be used
anymore, so there is no need for a client to keep the code or storage of that contract any
longer and it deletes the data. However, for analysis of historical data, these terminated
contracts might still be of interest.
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Another piece of temporary information is data from the mempool. Each node stores
new transactions that it receives in temporary storage, called the mempool. When
mining a new block, it selects pending transactions from the cache and puts them in the
transaction list of the new block. If the node receives a new block from another node, it
deletes all transactions from the mempool that are part of that block. The transactions
in the mempool do not contain information that is later not directly added to the block.
However, metadata information from the mempool might be of interest, e.g. how long
a transaction stayed in there. Also, this data can be used to detect front-running (see
section 6.2.1).

5.1.4 Off-chain Data

A variety of other data sources exist that are not on the blockchain itself, but can be
useful nevertheless. One example would be additional data, which blockchain explorers
like Etherscan provide. On Etherscan, users can upload the Solidity source code for their
compiled smart contracts and the platform verifies that the uploaded source code does
indeed correspond to the bytecode that is on the blockchain1. For this to work, the user
has to enter the exact compiler version and specify whether optimization was turned on.
One limitation, however, is that contract verification is not supported for contract-created
contracts.

Public Code Repositories

Another helpful resource are public code repositories, like on GitHub2. We can get
information about function names that are used in actual Solidity programs from there.
That is useful when we want to analyze function signature hashes from bytecode on the
blockchain. When calling a public function, that function and its argument types are
hashed using the Keccak-256 hash function. Then the first four bytes of that hash make
up the function identifier, which the dispatcher at the beginning of the program uses
to determine where the code execution needs to jump to for that function. So, in the
bytecode of every smart contract on the blockchain, we can find the four-byte hash of each
public function. Of course, it is impossible to calculate the function name only based on
the hash, but it is possible to create a lookup table for possible function names. In order
to generate such a table, real function names from Solidity programs are needed. GitHub
and other code repositories can provide us with thousands of different function names.

Libraries

Many contracts make use of helper functions from public libraries. Of special interest
are libraries with internal functions because “code of internal library functions and all
functions called from therein will at compile time be pulled into the calling contract, and

1https://etherscan.io/verifyContract2
2https://github.com/
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a regular JUMP call will be used instead of a DELEGATECALL” [44]. That means that the
usage of such a library can be directly seen in the bytecode of a contract.
The most popular Solidity library is the SafeMath library from OpenZeppelin, which

provides safe arithmetic operations that cannot over- or underflow [46]. All of its functions
are internal. We analyze the usage of the SafeMath library in section 6.6.

5.2 Data Extraction

There are several ways to obtain data from the Ethereum blockchain that we present in
this section.

5.2.1 Existing Tools

Several frameworks exist to extract data from the Ethereum blockchain. However, most
of them only consider block data and they cannot be used to extract state data at all.

Ethereum ETL

Ethereum ETL3 (short for extract, transform, and load) is a third-party framework
providing easy-to-use scripts to export large amounts of blocks, transactions, and tokens
into csv files. It is written in Python and makes use of the Web3 framework (see section
5.2.3). In an article, the author demonstrates its usage [47].
However, exporting the data to csv files, only to import them into an SQL database

later on, seems like an unnecessary intermediary step that can be skipped by directly
adding the block data into the database.

New Kids on the Block

For their paper “New kids on the block: an analysis of modern blockchains” [48], Anderson
et al. develop an Ethereum data extractor in NodeJS. Their implementation extracts
data directly from Geth’s data structure on disk and stores it in a PostgreSQL database.
Then, they use that data to perform a security analysis of smart contracts and to generate
several statistics, like the lifespan of selfdestructed contracts. However, it is not certain
whether this implementation can cope with the current blockchain size, as the paper is
from 2016 and they only extract data until block 1,358,548.

Additionally, Anderson et al. implement a modified version of the Geth client in order
to find out how many peers there are in the network. This crawler recursively asks other
nodes for their peers through the node discovery protocol. Besides estimating the network
size, they are able to generate a geographic distribution map based on the IP addresses of
the nodes. The code for both tools is available on GitHub4.

3https://github.com/medvedev1088/ethereum-etl
4https://github.com/modernblockchains/newkidsontheblock
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Using an API

If the user does not have access to a node, an external API can be used. The famous
blockchain explorer website Etherscan also provides an API5 through which all blockchain
data can be accessed from a program. However, it restricts the user to only five requests
per second, which is not enough when analyzing hundreds of millions of transactions.
Another popular provider of an API is Infura6, which does not have any rate limits.

But using a centralized API defeats the whole purpose of having a decentralized network.
Using the API means having to trust the API provider that the data was not tampered
with. Furthermore, as processing data from the entire blockchain would take a very large
amount of network requests, we set up our own Ethereum node and exclusively use IPC
calls to get blockchain data.

5.2.2 Reading the State Trie

The Ethereum client has its own database where it stores blockchain data and information
about the current state. Naturally, an intuitive approach is to read that existing database,
which the client builds up itself, directly and use that for data analysis.

A simple proof-of-concept implementation of this approach can be found in the
read_state_trie sub-directory of the code repository accompanying this thesis.

LevelDB

As mentioned in section 4.4.2, Geth uses the key-value database LevelDB to store infor-
mation in a dictionary-like data structure. A full node stores the current state trie in the
LevelDB, which can be found in the .ethereum/geth/chaindata directory.
Several articles describe how Ethereum’s database can be read directly [49, 50]. It is

important to note that in order to read the state trie for a certain block, the node has to
be synced fully up until exactly that block, i.e. it must have downloaded all block data
and executed all transactions. If that is given, one can simply look up the state root field
in the LevelDB to get binary data that can be parsed into the complete state trie. That
trie can now be traversed and all entries can be read successively.

Application

Looking at our model (see section 4.3.2), we see that the elements of the trie contain
the following RLP-encoded data: nonce, balance, storage root, and code hash. If we are
interested in the code of all smart contracts currently deployed on the blockchain, we can
simply traverse the trie and check for every account if the code hash is the hash of the
empty string. If that is the case, we found an externally owned account. Otherwise, we
found a smart contract and we can take the code hash as the key and look up the actual
code for that hash in the LevelDB.

5https://etherscan.io/apis
6https://infura.io/
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Limitations

One downside with this approach is that smart contracts that executed the SELFDESTRUCT
opcode will not be found as their code is immediately deleted by the node in order to
save disk space. To get all contracts, even those that are deleted at some point, the state
trie would have to be read for every single block of the past. Even then, this approach
would fail for contracts that are created and destroyed in the same transaction. In section
6.2.2, we show that this is not just a theoretical concept.
Performance is also a limiting factor. We have to go over all accounts in order to find

all smart contracts. That includes all externally owned accounts as well, of which there
are a lot more than smart contracts.
But the biggest limitation of this approach is that it does not really work with a live

node because the state trie is constantly changing when the node is getting new blocks.
Therefore, the node’s synchronization would have to be halted at a certain block so that
the contracts can be read. However, if at a later point synchronization is continued
up until a higher block, there is no way to import all the new smart contracts without
reevaluating all accounts.

5.2.3 Reading Block Data

In order to read block data from a node, that node must accept either RPC or IPC calls.
The difference is that remote procedure calls (RPC) can be sent from another computer
via the network and inter process communication (IPC) can only take place between
processes on the same machine. Because we do not want to have to create the network
requests directly from our program, we use a framework for that.

By making many consecutive IPC calls to the node, we can read all block data and save
all information, which is relevant for us in a database. More specifically, we can get user-
created smart contracts by looking at transactions with recipient null. The address of the
contract that is created this way can be calculated deterministically and is only depending
on the sender address and the nonce, which are both part of the transaction. The exact
formula is described in the yellow paper in section seven [6]. We then query our Geth
node with an eth.getCode() request to obtain the code that is actually deployed at that
address. However, if the SELFDESTRUCT instruction has been executed for that contract in
the time between deployment and our data collection, eth.getCode() returns an empty
contract. In that case, we look at the input field of the contract-creation transaction,
which contains EVM code that runs the constructor and puts the final contract code on the
blockchain. We use a simple heuristic to separate contract-creation code and constructor
arguments from the actual smart contract bytecode: the contract-creation code starts at
the very beginning of the input field and the actual bytecode starts afterwards at the first
PUSH1 instruction that pushes a value ≥ 0x60 on the stack and is located after the first
CODECOPY instruction. The constructor arguments start after the last STOP instruction in
the input after which there is an unknown operation (or simply after the last STOP of
the code if there is no unknown operation thereafter). If this heuristic does not match
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anything or if the complete input does not start with a PUSH1 instruction, we simply store
the complete input field as the contract code. We choose this heuristic because smart
contracts created by the Solidity compiler generally follow it and we cannot easily predict
actual bytecodes of custom contract-creation inputs. Again, this heuristic is only applied
for contracts that selfdestructed already.
This way, we only get smart contracts that are created by externally owned accounts.

Finding contracts that are created by other smart contracts requires a different strategy
as transactions that ultimately lead to a contract creating another contract can only
be identified by observing the entire transaction trace, which requires a lot of resources.
However, the address at which a contract-created contract is located is also deterministic
and only depending on the parent address and its current nonce. For a smart contract,
the nonce only increases if it creates a new smart contract. This is contrary to externally
owned accounts where the nonce also increases for every other transaction. Also, we only
have to consider smart contracts that contain the CREATE instruction, which is the only
instruction that can create another contract. Therefore, we iterate over all user-created
contracts containing a CREATE instruction and calculate the address of the contract it
would create for the first nonce. Then we call eth.getCode() to see if there actually is
a contract code at the location. If a contract is found, we store it in our database. We
increment the nonce as long as we find new contracts. When there is no contract for a
certain nonce, we additionally check 500 more nonces so that if a few contracts in between
were deleted already, we still find contracts that were created later but are not deleted
yet. This method lacks to get the code of contract-created contracts that selfdestructed.

We define that contracts that are created by an externally owned account are generation
zero. A contract that is created by a contract of generation n is generation n + 1. After
checking all user-created contracts in generation zero for potential child contracts, this
process is repeated for all contract-created contracts in higher generations until no further
contract is found. Due to the immense amount of contracts in the first generation we set
the number of nonces to check after eth.getCode() does not find a contract anymore to
50 for all higher generations.

Web3 and PyEthereum

For this data extraction approach we make heavy use of two frameworks. The Web3
framework7 implements Ethereum’s JSON RPC specification. It can be very easily used
to make RPC or IPC calls from Python or JavaScript code. Using these calls, we can
get all kinds of information from an Ethereum node, like the current block number,
specific contents of a block, and much more. Figure 5.1 shows a sample IPC call to the
eth_getBlockByNumber endpoint. The framework is developed directly by the Ethereum
foundation.

The PyEthereum framework8 complements Web3 with useful tools. It is also maintained
by the Ethereum foundation and it contains e.g. cryptographic functions, conversion

7https://github.com/ethereum/web3.py
8https://github.com/ethereum/pyethereum
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1 #!/usr/bin/python3
2 # coding=utf-8
3

4 from web3 import IPCProvider
5

6 class Geth():
7 def __init__(self, ipc_path):
8 self.provider = IPCProvider(ipc_path, timeout=60)
9

10 def get_block(self, block_num):
11 data = self.provider.make_request("eth_getBlockByNumber", [hex(block_num), True])
12 return data["result"]
13

14 def get_blocks(self, start, end):
15 for n in range(start, end):
16 yield self.get_block(n)

Figure 5.1: IPC call in Python using Web3

functions, address manipulation functions, and more.

5.3 Data Storage

Step number two of the data acquisition part is the storage of the data. We evaluated
two different database setups, of which the relational database suited our needs.

5.3.1 Graph Database

At first we tried using the graph database Neo4j9, which describes itself as “The #1
Platform for Connected Data”. A graph seemed like a good structure for our data, as
transactions and accounts are heavily connected with each other.

Database Setup

There is an existing repository on GitHub that stores blocks, transactions, and addresses
in a Neo4j database10. We forked it and made it work with IPC calls instead of only
RPC. Transactions and accounts are stored as nodes in a graph and each transaction is
connected with one edge to its sender and one to its recipient.

The setup allows us to use Neo4j’s graph query language “Cypher” to obtain data in an
intuitive way. For example, the following query returns the contract creator, nonce, and
code for all smart contracts:

MATCH (sender:Address)<-[:TX_FROM]-(tx:Transaction)-[:TX_TO]->(rcv:Address)
WHERE rcv.hash = 0
RETURN sender.hash, tx.nonce, tx.input;

9https://neo4j.com/
10https://github.com/sardinois/eth_graph
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Performance

In the end, we decided against using a graph database because it has performance issues
in comparison to a relational database. Our performance testing was twofold: first, we
evaluated how long it takes to import blocks, and then we timed retrieval queries on the
data structure. The test program to import approximately 280,000 recent blocks finished
after one whole day. Next, we ran the query from the previous section on that data set to
obtain all smart contracts and it finished after more than four minutes. Both of these
times are too high for our purposes because processing the entire blockchain would take
weeks and therefore the graph database is no viable solution for our problem.

Storing more than 350 million transactions in any database is quite a challenge and we
did not try to store every single transaction and account for our second approach, but only
the data that we really are interested in, which is smart contract data. When restricting
the data to that subset, it is not really that interconnected anymore and a graph database
is not the preferred data structure. Accounts and the transactions between them make up
a good graph, but when only looking at smart contracts and smart contract bytecode,
there is no clear graph structure.
The original code repository for the Neo4j Ethereum integration is from September

2017. At that time, there was a lot less data on the Ethereum blockchain and performance
was not such a big issue back then. But we were looking for a solution that scales with
the growth of Ethereum for the next couple of years, which is why we went for a relational
database after all.

5.3.2 Relational Database

Having decided that we do not store all transactions and accounts of the entire Ethereum
blockchain, but rather only smart contract data, we build up a MySQL database.

Database Schema

Our database schema consists of the following nine tables:

• eth.block – This table simply stores each block with its block number, hash, and
timestamp.

• eth.contractTransaction – As storing all transactions is infeasible, we only store
transactions that create a new contract, i.e. transactions to address 0. All the fields
that the Geth client provides for the transaction are columns in the table.

• eth.contract – In this table we store all smart contracts that were created by
an externally owned account. We store the address, the transaction hash, on
which network it was mined (mainnet or one of the test networks), the contract-
creation code and the constructor arguments that were passed with the contract-
creation transaction, and whether SELFDESTRUCT has been executed for the contract.
Furthermore, we store the Keccak-256 hash of the contract bytecode, which is a
foreign key for the eth.contractCode table.
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• eth.contractCode – In order to save disk space and to improve performance, we do
not store duplicate contract bytecodes. Therefore, we store the code in this separate
table and reference it using its hash from everywhere where it is used. Additionally,
we store whether this bytecode contains a CREATE opcode and how many times this
exact bytecode is referenced. As the result of our analyses later on, five other fields
are introduced: a reference to the verifiedContracts table if available, and the
minimum and maximum compiler and SafeMath versions that could be determined.

• eth.contractCreatedContract – This table is similar to eth.contract, though
not for contracts that were created by externally owned accounts, but by other
contracts. It also references eth.contractCode but has additional fields: the creator
address, the used nonce, and generation. The generation is n+ 1 if this contract was
created by a contract of generation n and contracts that were created by externally
owned accounts are implicitly of generation 0.

• eth.functions – The functions table is a lookup table of function signatures and
four-byte function signature hashes. It was generated as part of other works at our
chair using publicly available function names from Etherscan.

• eth.compiler – We use this table to store information about the different versions
of the Solidity compilers, including version number, long version string, and release
date.

• eth.library – Similar to the previous table, this table is used to store information
about different versions of libraries, like the SafeMath library. Columns are the
library name, version number, release date and the functions that this specific library
version implements.

• eth.libraryFunction – In this table we store bytecodes of library functions that
we were able to extract from the library, together with the compiler version used,
whether optimization was turned on, the library name and version used, and of
course the function name.

• verifiedContracts – We use this table to verify the results of our research. It
contains all verified contracts from Etherscan and was kindly provided to us by
another member of our chair.

Performance

This database setup, which does not store all transactions and accounts, performs much
better than the previous approach. For all our analyses (see chapter 6), we use block
data from the first 6,900,000 blocks of the Ethereum blockchain. Going over all blocks
and importing all user-created contracts to the relational database took approximately
33 hours. We imported the blocks in chunks of 1,000,000 blocks and figure 5.2 shows
the rate of imported blocks and contracts per second for each chunk. Because in the
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Figure 5.2: Imported blocks per second

first million blocks there are only 9,242 user-created contracts, they took just under 24
minutes to import. In contrast, blocks 5,000,000 to 5,999,999 contain 607,217 contracts
and the import ran for over ten hours. In addition, as more and more data is added to
the database, importing naturally becomes slower as MySQL has to check for duplicate
contract codes and update table indices. With this data structure, going over all bytecodes
of all contracts can be done in just a few minutes.

All performance tests for the relational database were run on an Ubuntu 18.04.1 machine
with Linux kernel 4.15.0. The system has an AMD EPYC 7401P 24-Core 2GHz Processor
with 128GB RAM and NVMe storage.
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After describing the Ethereum system in a conceptual model, acquiring data from the
blockchain, and storing it efficiently, we are now able to analyze the data. In the following
sections, we answer research questions 3, 4, and 5 by analyzing different anomalies in
the network, investigating ERC standard token usage, approximating Solidity compiler
versions of deployed bytecode, and detecting usage of the “SafeMath” library.

6.1 General Information

First, we describe both the data and our code repository that we use for analysis in a
general way. This is the basis for our analyses later on.

6.1.1 Underlying Data

As described in the previous chapter, we use the first 6,900,000 blocks of the Ethereum
blockchain for our analysis, i.e. block 0 until 6,899,999. The first block after the genesis
block was mined on July 30, 2015, and the last block is from December 16, 2018 UTC.
All user-created contracts in our database are from that time frame. However, due to our
method of obtaining contract-created contracts, it is not guaranteed that these contracts
are also exclusively from these blocks. When we discover a child contract of another
contract, it is not possible for us to determine on which date it was originally created,
because we do not know the transaction that ultimately lead to the creation of the contract.
Because importing all contract-created contracts into the database takes several days, a
few contracts that were created after block 6,899,999 are also added to our data set. This
is not a problem or limitation for our analysis, but should be noted for completeness.
The latest Solidity compiler version that we consider is 0.5.2, which was released on

December 19, 2018, and is the 46th official release. For the SafeMath library, the highest
version number is 2.1.1 from January 4, 2019. When counting all release candidates (RC)
as separate release, there are 31 versions.

Statistics

Next, we present some general statistics of our data set. Table 6.1 shows how many
user-created and contract-created contracts there are, and how many contract codes
exist. Throughout our analysis in this chapter, we distinguish between contracts and
contract codes. A contract code is EVM bytecode that is deployed any number of times
on the blockchain. Often, both metrics are relevant. Storing contract codes in a separate
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database table and referencing them from the contract and contractCreatedContract
table minimizes disk space and maximizes performance. We say a contract code is unique,
if there is exactly one single smart contract with that bytecode on the blockchain. In that
case, we call the contract unique as well. While 162,630 contract codes are unique, 27,596
are deployed two or more times on the blockchain.

Type Total Unique With CREATE opcode
User-created contacts 2,176,953 160,966 143,878
Contract-created contracts 4,803,762 1,664 1,921,588
Contract codes 190,226 162,630 14,901

Table 6.1: Amount of entries in the database

What can be seen in table 6.1 is that more than two thirds of all contracts are created
by other smart contracts. Furthermore, only about 7.39% of user-created and 0.03% of
contract-created contracts are unique. These results coincide with the ones from Kiffer
et al. [26]. Their data set, however only encompasses the first 5,000,000 blocks.
About 30% of all contracts contain a CREATE opcode, i.e. they can create other

smart contracts themselves. 83,310 (3.8%) user-created contracts have executed the
SELFDESTRUCT instruction between their initiation and our data collection.
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Figure 6.1: Occurrences of the hundred most used contract codes

Figure 6.1 shows for the top one hundred most used contract codes, how often they
occur on the blockchain. The distribution follows a power law [51]. The most used
contract code is used by 1,577,003 different smart contracts. With further investigation,
we find that these contracts are all created by the cryptocurrency exchange Bittrex1. The

1https://international.bittrex.com/
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exchange apparently creates one smart contract for each user account to facilitate token
management. We go more into detail about the most used smart contract codes in section
6.3.2.

6.1.2 Code Repository Setup

So far, all our results are derived directly from the database using SQL queries. For all
our following analyses there is a dedicated Python script, which performs SQL queries
on the database and further processes the data, making much more powerful analyses
possible than with simple SQL queries.
In the code repository, there are multiple folders with code. The contract_analysis

folder contains all analysis and evaluation scripts that we present in this and in the next
chapter. Except for the two helper scripts, each script can be run independently. When
running a script with the ––help option, a short description of the script is given and the
possible command line arguments are shown. Most of the time, the arguments consist of
the database username and password.
The folder database_model contains two SQL scripts. With create.sql, the whole

database schema can be created from scratch (see section 5.3.2). It also directly fills the
compiler and library tables. The functions table is created by the functions.sql
script.
Finally, the multi_compile_contracts folder contains a Node.js project whose func-

tionality we explain in detail in section 6.6.1. It is written in Node.js because it makes
use of solc-js2 in order to compile Solidity programs with older compiler versions. In the
directory, there is a folder with all OpenZeppelin SafeMath releases and one with the
Emscripten compiled binaries for every compiler version of Solidity.

Helper Scripts

As mentioned, there are two helper scripts in the contract_analysis folder that cannot
be directly executed but provide common functionality to all other scripts. opcodes.py
contains only a single variable: a list of all opcodes of the EVM. The list is composed in a
way that the text code at a certain index corresponds to the hexadecimal value of the
instruction. To obtain the opcode for a specific hexadecimal value, it is sufficient to access
the list at that index. The eth_util.py file contains several helper and debug functions
to facilitate development of our analyses. For example, it provides functionality to convert
bytecode to opcodes, to calculate function signature hashes, to compare version numbers
of compilers, and more. Each function in the script can each be run independently.

6.2 Anomalies

An anomaly is an unusual event or an entity that behaves abnormally. These are of
interest because they give a different insight of what is happening in the network than

2https://github.com/ethereum/solc-js
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by simply looking at normal behavior. In a way, anomaly detection can be seen as the
counterpart of clustering. We pursue multiple strategies to find anomalies. The following
sections answer research question 5 by showing three very different events that are all
unusual in their own way.

6.2.1 Front-running

Front-running is a phenomenon that originally stems from the stock exchange. One party –
the front-runner – performs a trade, knowing that a very large trade for the same financial
asset by some other party is about to happen shortly. The front-runner places their own
trade so that it occurs before the large trade and they benefit from the resulting price
change that is induced by the large trade [52].
In Ethereum, front-running is also possible because all transactions are public and

before a transaction is actually executed, it has to be distributed in the network. Each
full node stores the list of pending transactions in its mempool. Therefore, an attacker
can monitor the mempool and if they see a transaction to a token smart contract that
transfers a large amount of tokens, they could immediately place their own transaction to
the same contract where they buy or sell tokens, depending on how they expect the price
to be affected by the pending transaction. In order to actually front-run the transaction,
the attacker sets a higher gas price for their transaction so that miners prioritize that
transaction over the original one.
Detecting front-running requires an accurate view of the mempool, which is not per-

manently stored by the full node itself (see section 5.1.3). Therefore, in order to spot
such anomalies, either the mempool has to be stored manually for later analysis, or a
live detection system needs to be implemented. The script detect_front_running.py
represents a prototypical implementation of the later approach. It leverages Web3’s
eth.getBlock("pending") call to obtain all transactions in the mempool. New trans-
actions are stored in a temporary list containing all transactions that were seen within
the last five minutes. Every transaction in the current mempool is compared against
every transaction in that list and we check whether all of the following four conditions are
fulfilled:

• The transactions have the same recipient.

• They call the same function.

• One transaction has an at least 50% higher gas price.

• That transaction was issued at least 3 seconds after the other one.

We let this script run for ten hours on September 24, 2018, and were able to detect
many instances of possible front-running on the Ethereum blockchain. There were over
153,000 combinations of transactions that fulfilled the above four conditions. Almost half
of them were to one single contract: 0x22dccFA39DbE59CD3F27E6531B33B5101bb2A70D.
That contract is the “Daily Divs Card Game”, which coincidentally was launched on that
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exact day. Users can buy virtual playing cards from other users and every time a card
transfer happens, the card gets a bit more expensive and dividends are payed out to
all card owners. A purchase does not have to be explicitly accepted by the card owner.
As long as the buyer sends the correct price in Ether to the buy(uint _card, address
_referrer) function, the transfer happens. Initially, there are twelve cards, of which the
card with ID 0 is most expensive with a starting price of 4 ETH. Possessing an expensive
card means getting higher dividends from any card transfer. Therefore, the card with
ID 0 is very desirable. We investigate the second purchase of the card 0. After the first
purchase, its price is now 4.4 ETH. There are four transactions attempting to buy the
card at that price, but only one succeeds. All transactions are in block 6,392,902 and
table 6.2 shows for each transaction their gas price and the index within the block. The
transaction with the lowest index is executed first. It successfully buys the card and
all other transactions revert, because the price of the card is now higher than 4.4 ETH.
Clearly, if a buyer sets a higher gas price, their transaction is prioritized by the miner and
it takes an earlier position in the block. The successful transaction pays a twice as high
gas price than the other transactions.
However, it is not entirely clear if the user that was successful in the end actually

supervises the mempool for other transactions to the desired card or if they just blindly
set a high gas price, and hoped it would be sufficient.

Transaction hash Block number Index Gas price Successful?
0xb965fc839269dd1e... 6,392,902 0 115,000,000,000 Wei yes
0xef8acbc75d5d2b94... 6,392,902 4 66,000,000,000 Wei no
0xdc617d52bab9a2f8... 6,392,902 14 50,000,000,000 Wei no
0x539eb8341793cb3c... 6,392,902 15 50,000,000,000 Wei no

Table 6.2: Front-running for the Daily Divs card game

6.2.2 Self-destructing Constructors

Another anomaly, which we investigate are smart contracts whose constructor contains
the SELFDESTRUCT opcode. The script find_selfdesctruct_in_constructor.py finds
exactly such contracts. We use our heuristic from section 5.2.3 to detect the constructor.
Due to this methodology, the detection does not work for contract-created smart contracts.
In total, there are 43 user-created contracts, which immediately end themselves. In
contrast to the two million total user-created contracts, this is very insignificant and this
phenomenon is very rare on the Ethereum blockchain. Nevertheless, these smart contracts
might still be of interest.
One reason for such a behavior could be to hide certain activities on the

blockchain, as block explorers like Etherscan do not show the code of contracts
that are selfdestructed anymore. For example, for the smart contract at address
0x07Fb462187E24cbF3F440286837D4Fbb713c107c, there is exactly one transaction,
but the code is not available in the state trie of a normal full node anymore. The
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eth.getCode() call for that address merely returns the empty bytecode 0x. In order to be
able to read the code, one has to look at the contract-creation transaction and then convert
the bytecodes to opcodes. Apparently, before its destruction, the contract created another
contract, namely the one at address 0x4aB53afb23DEf51a624BE15A6dF5187b76f88AfA.
Through the immediate SELFDESTRUCT, the creation of the other contract is obfuscated.

Another reason for this behavior might be a simple programming error. The program-
mer of the smart contract might have accidentally put the self-destruction code in the
constructor instead of a dedicated function. And finally, there are sporadic detection
errors that stem from our non-perfect heuristic and from the fact that we can only detect
if a SELFDESTRUCT is in the constructor, but not whether it actually is executed, e.g. due
to a jump over that instruction.

6.2.3 Transactions to Future Contracts

The last anomaly that we examine are transactions to accounts that are not smart contracts
at the time of the transaction, but can become smart contracts at a later point in time.
We call these accounts future contracts. Transactions to future contracts are possible,
when the sender of the transaction knows that the receiving account can later have code
associated with it, because some user or contract can create the contract with exactly
that address in the future. This information can be known in advance, since the addresses
of smart contracts are calculated deterministically, only depending on the creator address
and the nonce.

We distinguish between transactions to future contracts that can be created by contracts
and those that can be created by externally owned accounts. First, we look at the former.
As mentioned, while importing contract-created contracts, we check a few additional
nonces after the last one that returns a smart contract code (see section 5.2.3). For each
of these nonces, we also leverage the eth.getBalance() call to check whether the future
contract that can be created with that nonce has non-zero balance. Note that this method
does not find future contracts that are already instantiated at the time the script runs.
We found two instances of future contract-created contracts. The first column of table
6.3 lists the parent address in the first row and the address of the future contract in the
second row. In the other columns, we note the nonce to create the future contract and the
balance at the time the future contract was found. At the time of writing, the account in
the first line was not a contract yet, whereas the second one was created 126,614 blocks
(22 days) after Ether was first transferred to the account. Our script was able to find it,
because it ran within these 22 days.

We only have a closer look at the second contract pair because it involves a considerably
larger amount of money. By looking up the four-byte function identifiers of the two
contracts in our table, we can understand this anomaly better. The function of the
parent contract that created the child contract is createForwarder(), which suggests
that the child contract’s task is to forward money to the parent contract. The child
contract itself has the functions balanceOf(address), transfer(address,uint256),
flushTokens(address), and flush(). Apparently, the flush() function transfers the
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Parent address and future contract Nonce Balance
0x41238ec6b8d6543f018abc672704747e4b8638df
0xFaF844B92994fc7194AB0e0B27C6AAf494f66C36

2 0.000559 ETH

0xbf0c5d82748ed81b5794e59055725579911e3e4e
0x9C921987501b13899F773836DebbA360E317C7e5

52,974 2.80853 ETH

Table 6.3: Future contracts that can be created by other contracts

money to the other contract. This convoluted and confusing sequence obfuscates the
transactions and makes it harder to track the flow of money in the network.

For transactions to future contracts that can be created by externally owned accounts,
we use a different approach. We iterate over every transaction with a volume of at least 10
ETH and check whether the recipient account is a smart contract. If this is the case, we
compare the block number of the transaction with the block number at which the contract
was created. If the first one is lower than the second one, we found a transaction to a
future contract. This approach only finds future contracts after they were instantiated.
Also, this technique does not work for contract-created future contracts because we do
not know the block number at which a contract-created contract is created. In total, we
found 22 transactions to future contracts with a value of at least 10 ETH. There were
26,821,359 transactions transferring at least 10 ETH in the first 6,900,000 blocks, so this
phenomenon is extremely rare, but nevertheless existing. For brevity, table 6.4 only shows
the biggest such transactions with at least 70 ETH.

Address
Tx
block
number

Creation
block
number

Value

0x332b656504f4EAbB44C8617A42AF37461a34e9dC 239,687 243,826 5,306.8 ETH
0x20FeAF3Db3576611b24F239E395651e0fC94b977 2,141,302 4,726,586 199.96 ETH
0x61E2E4e348A253f38f23Ee4D5B2aC17183e74c26 2,154,969 4,726,578 100.0 ETH
0xc751125099658dB6c4f79996069b2B89DC914727 2,164,811 4,726,453 168.0 ETH
0x9611cd35b858f9505515d82b0EeC9A6616fa795E 3,307,081 4,729,965 172.63 ETH
0x8eABaF1e1c35cd8E2677edE965D045bf645baF6e 3,644,181 4,731,860 300.0 ETH
0x73cCBb3A2665fF16cEd11A7B10a91eA31A783534 3,834,990 4,726,798 291.12 ETH
0xb07Ec92F81244F2a84df3A915D4E5c75CDd34346 5,239,082 5,240,098 70.31 ETH
0xA60DC0b1DaC08610543E8E68A9961847e0a13470 6,211,359 6,215,703 73.0 ETH

Table 6.4: Contracts receiving a transaction of 70 ETH or more before their creation

6.3 Areas of Application of the Ethereum Blockchain

In this section, we answer research question 4: “What are different areas of application
of the Ethereum blockchain?” Our approach is twofold. First, we determine how many
smart contracts implement ERC token standards and afterwards we have a closer look at
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some of the most used contract codes.

6.3.1 Determining ERC Standard Usage

A token system is a sub currency, which is associated with some value [53]. In
Ethereum, a token is implemented as a smart contract. There are official token
standards that define clear interfaces to allow interactions between tokens. In order
to be compliant to the standard, a concrete token contract implementation needs
to provide certain functions and events. The two most famous token standards are
ERC20 and ERC721. We present usage statistics for both of them. The script
get_contractHashes_with_certain_functions.py iterates over all contract codes and
compares the four-byte function identifiers of the bytecode with the known four-byte
identifiers of all functions of the token standards. Similarly, it compares the 32-byte event
identifiers with ones of the standard.

0 1,000,000 2,000,000 3,000,000 4,000,000 5,000,000 6,000,000 7,000,000

0

20,000

40,000

60,000

80,000

Block number

O
cc
ur
re
nc

es
ER

C
20

ERC20

0

200

400

600

800

1,000

1,200

O
cc
ur
re
nc

es
ER

C
72
1

ERC20
ERC721

Figure 6.2: Chronological sequence of user-created ERC20 and ERC721 tokens

ERC20 tokens are often used for initial coin offerings (ICOs). The official ERC20
specification contains six required and three optional methods. Additionally, two required
events must be implemented [54]. For the non-fungible token standard ERC721, there
are nine required methods and three required events [55]. Optional methods exist, but
as separate extensions to the standard. For our search for tokens, we only consider the
required methods and events. Figure 6.2 shows the chronological sequence for the total
number of user-created token contracts for each of the two token standards. Again, we
cannot show this kind of data for contract-created contracts because we do not have
information of when these contracts were created.

In our data set, there is a total number of 89,326 smart contracts from 51,114 distinct
contract codes implementing the ERC20 standard. Of these contracts, the majority were
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Figure 6.3: Amount of user-created ERC20 and ERC721 tokens per 100,000 blocks

created by externally owned accounts and only 7.2% were created by other contracts.
As the ERC721 standard was finalized more recently, there are much fewer contracts
implementing it. There are 906 ERC721 tokens from 668 distinct contract codes, of which
6.2% were created by other contracts. The number of contract-created tokens is very low,
especially compared to the entirety of smart contracts, where 68.8% of all smart contracts
were created by other contracts (see section 6.1.1). Furthermore, only about 1.3% of all
smart contracts implement any of these two tokens, but 27.2% of all contract codes. While
the code of individual tokens is not copied thousands of times across the blockchain, they
make up a substantial amount of the blockchain’s code base. This implies that tokens are
a popular use case of Ethereum.
In order to get a better understanding of the ERC token standard usage, we look at

the rate at which token contracts are published. Figure 6.3 shows how many user-created
ERC20 and ERC721 tokens were published on the blockchain for every 100,000 blocks.
Between block 5,100,000 and 5,200,000, the publication of ERC20 tokens reached its peak
with over 5,000 tokens published. For ERC721, there is no clear peak, but the rate has
been more or less constant since block 5,500,000.

6.3.2 Other Applications

The previous section shows that there is a big gap between usage statistics of contracts
and contract codes. While the percentage of tokens in all contract codes is quite high (one
quarter), the portion of actual smart contracts implementing a token is drastically lower
(one percent). The reason for that is that some contract codes are deployed hundreds
of thousands of times on the blockchain. In this section, we have a closer look at those
contracts.
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1 SELECT s.*, min(t.blockNumber)
2 FROM (
3 SELECT hash, occurrences
4 FROM eth.contractCode
5 ORDER BY occurrences DESC
6 LIMIT 10
7 ) AS s
8 LEFT OUTER JOIN contract c
9 ON s.hash = c.contractHash

10 LEFT OUTER JOIN contractTransaction t
11 ON c.transactionHash = t.hash
12 GROUP BY s.hash, s.occurrences
13 ORDER BY s.occurrences DESC;

Figure 6.4: SQL query to get the first address of the most used contract codes

# First address First block
number Occurrences

1 0xdf8c6179eccd33e69e0f049c799c1dd1cdf0e4e9 4,150,297 1,577,003
2 0x373b9ffa3168bfac15ab8b626e2fc98ad5d275a8 4,978,201 633,871
3 0x7622baab37c769a1f50079dfd1aa7b77a2c8976f 4,995,470 540,103
4 - - 540,102
5 0x081d01a3ed60276d75da093033432fea328bf268 3,750,675 391,512
6 0x7538f0ad127a8a4ed0156f671a219e3447b84627 4,545,729 311,166
7 0x5aa66081b8ff73aac7d905f32d434a680635fd43 4,269,936 306,611
8 - - 176,910
9 0xf2a96221c9393f0fd5b8a98e37c216bc3909847a 3,712,109 142,581
10 0xdbe25a28bf45bbacaf0fec554c3fa07053466a00 4,353,450 125,327

Table 6.5: First address of the most used contract codes

Figure 6.4 shows the non-trivial SQL query used to obtain the data in table 6.5. The
table lists for the top ten most used contract codes the first deployed address that used
the contract code, its block number, and how many times the code is deployed on the
blockchain. Note that two contract codes are missing the first two attributes. These
contract codes are exclusively created by other contracts instead of externally owned
accounts.
In order to identify the purpose of these contract codes, we use multiple sources

from the Internet. For the most used contract code, the verified source code is publicly
available on Etherscan3. There is a comment in the code saying that it is from the Bittrex
cryptocurrency exchange, which, after some more investigation, seems very credible. Also,
the number 9 most used contract code seems to be a contract created by Bittrex as well.
All except for one contracts with that code are created by the same address and the

3https://etherscan.io/address/0xdf8c6179eccd33e69e0f049c799c1dd1cdf0e4e9#code
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block explorer website Bloxy associates Bittrex with the address4. On Bloxy, there is also
information about an address that created 99.96% of all contracts with the number 2
most used contract code5. These belong to an exchange platform, too, in this case Upbit.
By the same reasoning, the number 6 most used contract code can be attributed to the
Ethereum Name Service (ENS)6. And finally, the fifth contract code in our list is linked
to the Poloniex exchange, as a Google search for its almost sole creator address reveals7.
In summary, we are able to determine the purpose of half of the top ten most used

contract codes. Four of these are cryptocurrency exchanges, which alone make up 39.3%
of all smart contracts deployed on the blockchain. It is safe to say that this is the biggest
area of application for Ethereum smart contracts in terms of amount of deployed contracts
because many more cryptocurrency exchanges are known besides the three mentioned.

6.4 Metadata Analysis

This section, along with the next two sections, deals with research question 3: “What does
metadata tell us about the network?” For our metadata analysis, we extract hard-coded
addresses in smart contracts and apply the PageRank algorithm [56] to them. Afterwards,
we observe which function signatures are used most often in contracts. Finally, we compare
balances of smart contracts that were all created by the same contract.

6.4.1 Hard-coded Addresses

When a smart contract contains a hard-coded address, it appears as a PUSH20 ... op-
eration in the EVM bytecode since addresses in Ethereum are 20 bytes long. Con-
versely, not every PUSH20 operation necessarily pushes an address to the stack, but it
is a strong indicator. Two special values of PUSH20 operations that are not addresses
are 0xff..ff and 0x00..00. For our analysis, we filter these values out. The script
extract_hard_coded_addresses.py iterates over all contract codes, finds all instances
of PUSH20 instructions, and prints a ranking of the most used addresses in smart contracts.
Table 6.6 lists the top five of that ranking.

Upon closer investigation, we discover that the number 1 most used address is used
almost exclusively in the number 3 most used contract code and the number 2 most used
address practically only appears in the number 4 most used contract code (see section
6.3.2). Behind both of these addresses is a contract with no transactions that does not give
any information about why it is referenced so often. Only the fact that the creator of both
of these contracts is identical (address 0x1Ff21eCa1c3ba96ed53783aB9C92FfbF77862584)
hints that the two most referenced addresses and therefore the number 3 and 4 most used
contract codes are linked together. Metadata analysis helps to unearth such relationships.

4https://bloxy.info/address/0xedce883162179d4ed5eb9bb2e7dccf494d75b3a0
5https://bloxy.info/address/0x4f01001cf69785d4c37f03fd87398849411ccbba
6https://bloxy.info/address/0x6090a6e47849629b7245dfa1ca21d94cd15878ef
7https://www.reddit.com/r/ethereum/comments/6ee36x/is_the_network_hanging_in_there_okay/

di9mz9c/

53

https://bloxy.info/address/0xedce883162179d4ed5eb9bb2e7dccf494d75b3a0
https://bloxy.info/address/0x4f01001cf69785d4c37f03fd87398849411ccbba
https://bloxy.info/address/0x6090a6e47849629b7245dfa1ca21d94cd15878ef
https://www.reddit.com/r/ethereum/comments/6ee36x/is_the_network_hanging_in_there_okay/di9mz9c/
https://www.reddit.com/r/ethereum/comments/6ee36x/is_the_network_hanging_in_there_okay/di9mz9c/


6 Analysis

# Address Occurrences PageRank
1 0xc3b2ae46792547a96b9f84405e36d0e07edcd05c 544,847 0.220 (1.)
2 0x072461a5e18f444b1cf2e8dde6dfb1af39197316 540,105 0.218 (2.)
3 0xaf1931c20ee0c11bea17a41bfbbad299b2763bc0 125,327 0.051 (3.)
4 0xc8b55c7ad00fb9b933b0a016c6cebceea0293bb9 112,905 0.015 (9.)
5 0x208123a89e93fbbbeb19513315fee23698520029 89,136 0.036 (4.)

Table 6.6: Most used addresses in smart contracts

Graph Analytics

The PageRank algorithm was originally developed by Page et al. to objectively assess the
importance of web pages [56]. However, it can be applied to any graph to get nodes that
are central or important. In page_rank_addresses.py, we build a directed graph from
all addresses that appear in the bytecodes of smart contracts. The graph contains an edge
from address A to address B, if and only if the code at address A contains a reference to
B. We apply the PageRank algorithm to this resulting graph. In the last column of table
6.6, we note the PageRank score (which is between 0 and 1) and the absolute ranking
among all nodes for the five most used contracts. Evidently, the contracts with the most
occurrences also have the highest PageRank scores.
The reason why the results of the PageRank algorithm is not very meaningful

is the structure of the graph. First of all, every node that represents the ad-
dresses of an externally owned account is a sink. Additionally, the graph is very
sparse, containing 10,675 weakly connected components for the 2,103,225 total
nodes. There are four non-trivial strongly connected components of the graph that
contain two nodes each, meaning that these contracts reference each other. One
example are the addresses 0xd40405fd33e1e5b15242fe8354a82f0663eb9540 and
0xa27c1a216db8027e5b4a77c2f4fca0ed88db166d. Upon the creation of the first
contract, its creator must have anticipated the creation of the second one. However, none
of the four contract-pairs contains any Ether or is of special interest. When removing all
cyclic edges of strongly connected components, the longest path in the graph contains
nine nodes.

6.4.2 Function Hashes

Besides hard-coded addresses, smart contract bytecodes also reveal function signatures.
Table 6.7 shows the top ten most used function signatures of all contracts that were deter-
mined using the script extract_function_hashes.py. Finding function signatures works
just like finding hard-coded addresses, but this time we observe PUSH4 ... operations.
We filter out the values 0xffffffff and 0x01000000 because they do not correspond
to function signatures. When outputting the ranking of the most used signatures, we
perform a lookup in our functions table to get the function name, if available. For three
signatures in the top ten, no function name is known. These three signatures are used in
the fifth most used contract code 391,512 times. As seen in section 6.3.2, these contracts
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belong to the Poloniex cryptocurrency exchange. We can assume that these functions
provide some functionality specific for the exchange.

# Function signature Function name Occurrences
1 0x3c18d318 sweeperOf(address) 2,478,244
2 0x6ea056a9 sweep(address,uint256) 2,469,444
3 0xa9059cbb transfer(address,uint256) 1,881,524
4 0xc0ee0b8a tokenFallback(address,uint256,bytes) 1,803,067
5 0x70a08231 balanceOf(address) 1,238,426
6 0x8da5cb5b owner() 1,021,211
7 0xe5225381 collect() 446,953
8 0xb76ea962 - 395,259
9 0x82c90ac0 - 391,522
10 0x66117276 - 391,516

Table 6.7: Most used function signatures in smart contracts

The two most used functions sweeperOf(address) and sweep(address,uint256) are
functions that are used by smart contracts of many cryptocurrency exchanges to transfer
Ether and tokens. Both Bittrex and Upbit have these functions exposed in their contracts
codes. transfer(address,uint256) and balanceOf(address) are part of the ERC20
standard and are therefore used by all ERC20 token implementations [54]. The other
functions are auxiliary functions. tokenFallback(address,uint256,bytes) is defined
by the ERC223 standard [57] and is used to handle token transfers from ERC20 token
contracts. owner() returns the creator of the smart contract and collect() is used by
the initiators of crowd sales to collect their money if the goal is reached.
In all, there are 204,879 different function signatures in the Ethereum network and

27,589,209 total functions. On average, a smart contract contains 3.95 functions.

6.4.3 Balances of Created Contracts

For our last analysis in this section, we look at accounts (contracts and externally owned
accounts) that created the most smart contracts. Additionally, we are interested in
the balances of these accounts. The script get_balances_of_created_contracts.py
gathers data from both the contract and the contractCreatedContract database table
and leverages the eth.getBalance() call to determine the balance of the creator and
to calculate the sum of the balances of the created contracts. The results in table 6.8
correlate with the most used contract codes from section 6.3.2 because often a contract
code that occurs many times on the blockchain is created by the same account. For
example, the account that created the most smart contracts only created contracts with
the contract code that was used most often. As mentioned in section 6.3.2, this account
belongs to the Bittrex cryptocurrency exchange. The creator addresses of the numerous
Upbit and Poloniex smart contracts are also represented in table 6.8 at position 3 and
4, respectively. Also, the main contract of the Ethereum Name Service (ENS) is here
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in sixth position. There is a high amount of money in its child contracts because the
service is used by many different users for registering domain names for addresses. After
the initial request for a domain name by a user, the main contract creates a new deed
contract where users can place bids for that domain name. The sum of the balances of all
child contracts of the ENS registrar is the amount of Ether that is currently in auctions
for domain names.

# Creator address Creator
balance

Contracts
created

Sum of
child balances

1 0xa3c1e324ca1ce40db73ed6026c4a177f099b5770 0 ETH 1,576,972 615.93 ETH
2 0x71d271f8b14adef568f8f28f1587ce7271ac4ca5 0 ETH 743,646 865.25 ETH
3 0x4f01001cf69785d4c37f03fd87398849411ccbba 0 ETH 633,629 0 ETH
4 0xb42b20ddbeabdc2a288be7ff847ff94fb48d2579 3.36 ETH 391,521 26.27 ETH
5 0x279b045989bd4cd60ee4a53d2a1c0621a4b4623f 0 ETH 333,422 96.57 ETH
6 0x6090a6e47849629b7245dfa1ca21d94cd15878ef 0 ETH 311,160 177,038.34 ETH
7 0x17bc58b788808dab201a9a90817ff3c168bf3d61 22,192.28 ETH 306,610 124.63 ETH

Table 6.8: Balances of accounts that created the most child contracts

One application of this methodology is to gain insights in how big cryptocurrency
exchanges are. We can assume that these exchanges are creating hundreds of thousands
of smart contracts in order to have one contract per user. The advantage of this approach
over having one single large contract with all assets of all users is that there is no single
point-of-failure and it facilitates user token management. The amount of contracts gives
us an estimation of the number of users of a cryptocurrency exchange. Also, by summing
up the balances of the contracts, we can easily get an idea of how much money users have
deposited at the exchanges. For exchanges that manage all their users in one single large
contract, the number of users cannot be estimated so easily.

6.5 Approximating Compiler Versions

A very important piece of metadata information is which Solidity compiler version was used
to create the EVM bytecode. Of course, it is also possible to skip the compiler and directly
write EVM bytecode or to use another language that compiles into EVM code, like Vyper8

or LLL9. However, as Solidity is the most widely used language to write smart contracts, we
only consider that. In the compiled bytecode itself, there is no dedicated field for the com-
piler version. Therefore, we use two different heuristics to derive a range of compiler versions
that could have been used. The script determine_possible_compiler_versions.py cal-
culates these heuristics for every contract code and updates the minCompilerVersion
and maxCompilerVersion columns in the database.
In section 6.6 we are able to further refine the compiler version range by leveraging

library versions. We evaluate our compiler version approximation in section 7.2.1.

8https://github.com/ethereum/vyper
9https://lll-docs.readthedocs.io/en/latest/lll_introduction.html
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6.5 Approximating Compiler Versions

6.5.1 Contract Creation Date

The first heuristic we use for compiler version estimation is the contract creation date.
The reasoning behind this is straightforward: a smart contract cannot be compiled with
a compiler version that was not released yet at the time of the smart contract creation.
Therefore, for every contract code we get the timestamp of the oldest user-created contract
with that code from our database. The timestamps are derived directly from the block
header of the block, which the contract-creation transaction was part of. In case a contract
code is only used by contract-created contracts, we use the creation date of the oldest
parent because the child contract uses the same compiler version as the parent.
In the compiler table, we manually inserted the release dates of all Solidity compiler

versions from 0.1.1 (released in August 2015) to 0.5.2 (released in December 2018).
This information is publicly available on the GitHub releases page of the Solidity compiler
[43]. With that, we can create a range for each contract code, starting from the earliest
compiler version and ending with the compiler version released just after the first contract
with that contract code was released. We intentionally set the upper boundary of the
range one version too high, because a nightly version could have been used to compile the
contract. Nightlies are pre-releases for development purposes that may already contain
some of the features for the next release. Usually, they are released every night, hence
the name. As soon as a new stable version is released, a new nightly for the next stable
compiler version is released as well. In all, this heuristic gives an upper bound for the
compiler version.

6.5.2 Header Analysis

For our second heuristic we look at headers of smart contracts, i.e. the first few bytes
that their bytecode starts with. With find_bytecode_prefixes.py, we determine the
frequency of all one- to ten-byte prefixes and create a ranking. The flow chart in figure
6.5 shows the most relevant prefixes for our analysis. About 91.8% of all smart contracts
start with 0x6060604052. These are two PUSH1 operations and an MSTORE operation that
are used to initialize the memory pointer. The Solidity compiler always inserts these
instructions at the very beginning of the generated bytecode. However, with version 0.4.22
of the Solidity compiler the initialization slightly changed and the first operation is not
PUSH1 0x60 anymore, but PUSH1 0x8010. Therefore, if a contract starts with 0x60806040,
it is very likely that this contract was compiled with a compiler version greater than or
equal to 0.4.22.
Now we take a closer look at contracts starting with 0x6060604052. For 99.7% of all

these contracts, the next byte in the bytecode is one of either 0x5b, 0x63, 0x36, or 0x60.
One header that we are able to associate with a compiler version range with high certainty
is 0x60606040526004. Contracts starting with this prefix are very likely to be compiled

10The commit of this change can be found here: https://github.com/ethereum/solidity/commit/
0cbe55005de79b0f7c5c770d50c3eb87df019789#diff-6ec42630506b86abb9d7386116dd0e5bR53
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user-created contracts (2,176,953) contract-created contracts (4,803,762)

all smart contracts (6,980,715)

other (190,274)0x60806040 (378,757)
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0x6060604052
(6,411,684)
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other (212,143)

Figure 6.5: Most used prefixes of smart contract bytecodes

with a version between 0.4.18 and 0.4.21 (inclusive)11. For other contracts starting with
0x606060405260 (without the additional 04), no definitive statement about the compiler
version can be made.

From the previous findings, we conclude that contracts starting with 0x60606040525b,
0x606060405236, or 0x606060405263 are very likely to be compiled with version 0.4.17
or lower. After compiling many smart contracts and inspecting the resulting bytecode, we
can narrow down one header even more. Smart contracts starting with 0x606060405263
are compiled with a version greater than or equal to 0.4.7 where compiler optimizations
are turned on. The five headers that we identified are colored green in figure 6.5.

6.6 Library Usage

Another relevant piece of metadata information is whether a smart contract is using
libraries and if yes, which library version is used. We only focus on the SafeMath library
from OpenZeppelin [46] here because it is by far the most popular Solidity library. However,
these techniques can be applied to other libraries, too.
As Solidity does not protect arithmetic operations from over- or underflowing, the

11This is the relevant commit in the Solidity compiler repository: https://
github.com/ethereum/solidity/commit/a3db1fc1976e1b2e67aedecb771c288b6dca6b1c#
diff-442991761f888e625e1df9f83e8ff779R256
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6.6 Library Usage

programmer has to check manually for these errors. SafeMath provides functions that
replace ordinary arithmetic operations and always check for over- and underflows at every
operation. The first version of the SafeMath library was released in November 2016 and it
only contained the replacement functions mul, add, and sub. The last version that we
consider is 2.1.1 released in January 2019, which additionally has a safe version of the div
and a mod operations. Some SafeMath versions also contained min and max functions that
were later refactored into a separate Math library. However, because these two functions
are so fundamental and sometimes appear in smart contracts that do not include the
library, but simply implement these exact functions themselves, we do not consider them
for our analysis. All SafeMath functions are internal, meaning that their code is copied
into the bytecode of every contract that is using the library.

Our approach to detect SafeMath usage in Ethereum smart contracts consists of three
steps. First, we compile all versions of the library with all compatible compiler versions.
Then, we extract the bytecodes of each individual library function from the compiled
libraries and store them in the database. And finally, we search through all contract codes
on the blockchain to see if they contain one or more of the extracted library functions.

6.6.1 Compiling All SafeMath Libraries

We downloaded all SafeMath versions from OpenZeppelin’s official GitHub releases page
[46]. However, when compiling only the library together with an empty contract, the
compiler does not put the bytecode of the internal library functions inside the contract
bytecode. In order for that to happen, these functions must be called at least once by the
contract. This mechanism avoids dead library code in the final contract and therefore
reduces gas consumption. For that reason, we write a test contract for every SafeMath
version that calls each internal library function once. Every call is done with a unique
parameter that makes it easy to find the call in the bytecode later on, e.g. a.mul(0x1111);.
The test contracts slightly vary for different library versions because some older versions
do not contain the mod and div functions. Additionally, until version 1.0.4, the library was
not implemented as a Solidity library, but as a regular contract and the functions were
named differently. Because of these subtleties, it is not easily possible to create the test
contracts automatically. Instead, they must be adjusted manually for every library version.
However, for the remaining analysis of the resulting bytecodes, the minor differences in
the library versions do not play a role.
The Node.js project in the multi_compile_contracts folder of our repository allows

compiling a Solidity program with all compatible compiler versions. Using a Bash script, we
execute this program for each of our SafeMath test contracts. Internally, the project uses
the Emscripten compiled binaries of the Solidity compiler [58]. For every compiler version
that is compatible with the pragma header of the contract, the program automatically
compiles the contract both with and without optimizations turned on. The output
bytecodes are then written to files in a dedicated directory and are later used by the
library function extraction tool.
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6.6.2 Extracting Library Functions

After compiling all SafeMath libraries with all compatible compiler versions, we need to
extract the bytecode of the internal functions from the raw bytecode. Zhou et al. describe
a sophisticated heuristic to identify internal functions in a general way [29]. We, however,
implement a simpler heuristic in the script extract_library_functions.py by taking
advantage of the fact that we call each internal function with a unique parameter in our
test contracts. As a starting point for our search for an internal function, we take the
PUSH2 instruction that pushes our unique parameter for that function onto the stack. Of
course, when picking the parameters, we make sure that they do not appear anywhere
else in the bytecode. From the starting point, we search for the next PUSH2 instruction
in the bytecode because after the parameter is loaded, the jump to the internal function
is prepared. The PUSH2 instruction loads the address of the beginning of the internal
function onto the stack and immediately afterwards a JUMP to that address follows. That
marks the beginning of the internal function. Our experiments show that there are three
possible sequences of instructions that can end the internal function: JUMPI INVALID
STOP or REVERT STOP or a JUMP without no PUSH2 instruction directly preceding it. After
determining the exact beginning and end of an internal function, we have to sanitize the
bytecode. That means that we remove all absolute jump destination addresses in the
bytecode in order to make it comparable, no matter at which offset the internal function
is located within the contract. Therefore, we replace the parameter of every PUSH2
operation with the placeholder xxxx. Finally, we save the sanitized function bytecode in
the libraryFunction database table, together with the compiler version, a flag whether
compiler optimizations were turned on, the library version, and the function name.
From the 540 compiled binaries from the previous section, we are able to extract 82

distinct library function bytecodes.

6.6.3 Finding Library Occurrences

The final step of detecting SafeMath library usage is to match the extracted
library functions with smart contract bytecodes, which we do with the script
find_library_occurrences.py. We iterate over all contract codes and for every one
of the five SafeMath library functions (add, sub, mul, div, mod), we check if we find
any of the extracted function bytecodes in the contract code. As mentioned, a contract
only contains the bytecodes of internal library functions that it actually calls at some
point. Next, we create a list of compiler and library version combinations that are
possible for this exact combination of functions. To do so, we request all versions
from the libraryFunction table for each individual matched function bytecode. Our
initial preliminary list of compiler and library version combinations consists of those
combinations that are possible for all matched functions. We further refine this list two
times. Combinations with compiler versions that are outside of the range determined by
our previous compiler version determination (see section 6.5) are discarded. Moreover,
similar to our compiler version approximation, we can set an upper boundary for the
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maximum library version that could have been used by looking at the release date of
the library. A contract cannot have used a SafeMath library version that was released
much later than the contract itself. Again, due to pre-releases of the library we also
consider one library version that was released after the contract. Lastly, we update
the contractCode database table with these upper and lower boundaries of both library
and compiler versions. For every set of library function bytecodes there is only a limited
number of library and compiler version combinations meaning that with this technique we
can narrow down the estimated compiler version even more from our previous approach.
In total, we were able to detect 87,575 smart contracts with 48,304 distinct contract

codes that use the SafeMath library. That is more than one quarter of all contract codes.
This result resembles the outcome of our token usage statistics (see section 6.3.2). It
shows that on the one hand there are a few contract codes with little functionality that
are represented millions of times on the blockchain and on the other hand there are
many contract codes often uniquely represented by a single instance of a smart contract
that implement sophisticated behavior. Two indicators that a contract is probably doing
something more complex and non-trivial are the usage of advanced libraries and the
implementation of an ERC token standard.
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We assess the quality of the results from the previous chapter next. After detailing our
evaluation approach, we evaluate those of our findings that are not exact facts. Particularly,
that encompasses the compiler and library version estimation.

7.1 Evaluation Approach

In order to be able to evaluate our version estimations, we need a data set that contains
smart contract bytecode, the corresponding source code, and the compiler version that
this code was compiled with. The source code is important to check whether the SafeMath
library was indeed used or not. Verified contracts on Etherscan provide all of these
properties.

7.1.1 Verified Contracts on Etherscan

During previous research, another member of our chair built a web crawler that downloads
all verified contracts from the Etherscan website and saves them to a database, together
with all publicly accessible attributes provided by the website like the compiler version,
the verification date, and more. The data set contains 134,308 verified contracts. 54,179
of them are from the main network, which we are focusing on in our analysis. The rest of
the verified contracts are from one of the Ethereum test networks.
We integrate the verifiedContracts table into our database setup. The

script match_verified_sourcecode.py matches the entries of our contract and
contractCreatedContract table with the verified contracts based on the address and
the network ID. Then it sets the verifiedSourceCodeID field of all contract codes for
which a verified contract was found. In total, we have 50,433 different contract codes with
verified source codes making up 2,096,497 smart contracts. This number is a bit lower
than the total number of contracts from the main network in the verifiedContracts
table because the table contains contracts that were created after block 6,900,000 and
because some verified contracts from Etherscan are using identical contract codes. Also,
we disregard all verified contracts in the database table that do not have the compiler
field set. Nevertheless, more than 50,000 verified contract codes is a good evaluation basis.

7.1.2 Limitations

Our evaluation approach comes with a few limitations that must be mentioned. First of all,
some of our results cannot be evaluated well at all. For example, the detection of ERC20
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and ERC721 tokens is not an estimation, but a fact based on whether a contract bytecode
contains certain four-byte function identifiers. If we were to search for the real function
names in the source code of verified contracts to check whether a contract implements a
token, we would come to the same result. The same is true for our other general statistics
about the network, like most used contract codes or transactions to future contracts.

Furthermore, there are limitations of the data set provided by Etherscan. Of the 54,179
verified contracts from the main network, only 691 or 1.28% are using a compiler version
lower than 0.4.0. This number is disproportionate to all contracts on the blockchain with
a version number lower than 0.4.0. Version 0.3.6 (which was the version before 0.4.0) was
released on August 10, 2016 and until that point in time, there were 55,889 user-created
smart contracts on the blockchain, which is 2.57% of all user-created contracts now. These
are all contracts that definitely must have used a version lower than 0.4.0, even considering
the nightly releases of 0.4.0. Moreover, it is safe to assume that many programmers still
used older compiler versions even after the release of 0.4.0. So in order for the number
of verified contracts with compiler version lower than 0.4.0 to be proportionate to the
number of all contracts that number would need to be at least twice as high as it is.

Research has shown that data from Etherscan cannot be trusted unconditionally. There
are several verified contracts for which the compiler version from Etherscan does not
fit to the compiler version in the source code. For example, Etherscan claims that the
contract at address 0xbb13b668fa4a9cf89c601997355d759b0f7799a9 was compiled with
compiler version v0.4.14+commit.c2215d46, but in the source code the very first line
reads pragma solidity ^0.4.18; meaning that this code should be compiled with at least
version 0.4.18. In the verifiedContracts table, there are fourteen more examples from
all networks of such incompatible compiler versions. We manually checked that these
are indeed mistakes by Etherscan, and not by the data crawler. It is unclear how these
contracts were verified because compiling source code with an incompatible compiler
version always aborts with an error. Even though these contracts make up merely 0.01%
of all verified contracts, they lower the trust in the data provided by Etherscan. If such
mistakes happen, there is a chance that there are other mistakes as well that are not as
easily detectable. Nevertheless, since this is the biggest data set of smart contract source
codes annotated with compiler versions we still use it for our evaluation.

Unfortunately, Etherscan recently made a change to their website showing only the last
1000 verified contracts as a list instead of all of them. That makes it harder to crawl all
verified contracts because it is not possible anymore to go through all the pages of the list
and scrape the contracts one after another. Instead, one would have to make the crawler
access the web page of one smart contract for every contract code in our database. If that
contract, or a “similar” contract as Etherscan calls it, is verified, the source code can be
obtained that way.
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7.2 Evaluation Results

After describing our evaluation approach and its limitations, we now present the evaluation
results of the compiler and SafeMath version estimation. All results are obtained with the
scripts verify_results.py and calculate_significance_of_version_numbers.py.

7.2.1 Compiler Version Estimation

Of the 50,433 contract codes in our evaluation set, our approach determines a correct
minimum and maximum compiler version for 50,061 or 99.26% of them. In terms of
total contracts, that is 2,059,098 of 2,096,497, or 98.22%. More than two thirds of the
contract codes, for which the estimation of the compiler version is incorrect, are using a
nightly compiler version. This is the main reason why our heuristics fail, even though we
are considering nightly versions in our compiler version estimation. However, we do not
compile all SafeMath libraries with nightly versions because there would have been too
many compiled outputs. Until compiler version 0.5.2, there are 46 stable and 621 nightly
releases. That is why the estimation for contracts that are using a nightly version and are
using the SafeMath library is sometimes slightly wrong.
One other example of where our heuristics determine a compiler ver-

sion that differs from the one on Etherscan is for the contract at address
0xbb13b668fa4a9cf89c601997355d759b0f7799a9. As mentioned in section 7.1.2, the
“verified” version on Etherscan for that contract (0.4.14) does not fit to the version in the
source code (0.4.18 or above). For this contract, our approach determines the compiler
version to be between 0.4.18 and 0.4.20, which fits better to the source code version than
the verified version on Etherscan.

Compiler Version Distances

These results alone do not suffice to judge the quality of our estimation. A hypothetical
compiler estimation heuristic that sets the minimum compiler version to 0.1.1 and the
maximum version to 0.5.2 for all contracts would be correct for every single contract
but the results would be meaningless. Therefore, we also evaluate the size of the range
of our estimation, i.e. how many version numbers the minimum estimated version and
the maximum estimated version are apart from each other. In the optimal case, where
the upper and lower boundaries are identical, this number would be zero, whereas the
maximum distance is 45. This time, as an evaluation basis we do not take the 50,433
contract codes that have verified source code, but all 190,226 contract codes. The average
compiler version distance of these contract codes is 11.45 with a median of 3. Considering
all smart contracts, the average distance is 24.82 and the median is 33. However, since
a few contract codes are represented hundreds of thousands of times on the blockchain,
the last two numbers do not have as much meaning as the first two. For example, there
are 2,159,645 smart contracts with distance 33, but only 1,128 contract codes with that
distance. That is equivalent to 30.9% of all smart contracts, but only 0.6% of all contract
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codes, which is why the average and median are so high when looking at all smart
contracts.
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Figure 7.1: Distances of compiler version estimations for contract codes

Figure 7.1 shows the amount of contract codes for every possible compiler version
distance. There are three distinct peaks at distances 3, 20, and 34. These originate directly
from our methodology. In section 6.5.2, we identified the header 0x60606040526004 to be
corresponding to compiler versions between 0.4.18 and 0.4.21. These two boundaries have
exactly distance three and are responsible for a large part of the peak at that distance.
Another large fraction of that peak stems from the header 0x60806040, for which we
set the lower compiler version boundary to 0.4.22. The time between releases 0.4.24
and 0.4.25 was with almost four months unusually long. Normally, a new version of the
Solidity compiler is released every one or two months. For all contracts in this four-month
period, our heuristic sets the upper boundary to 0.4.25 (due to our adjustment for nightly
releases). Together with the lower boundary, we get a total compiler version distance of 3
for these contracts.
The peak at distance 34 can be explained similarly. For the headers 0x606060405236

and 0x60606040525b, we set the upper boundary to version 0.4.17, which is the 35th
compiler release, making the distance to the first compiler version 34. Also, there is a
very small peak at distance 10, which is due to the header 0x606060405263, which we
determined for compiler versions between 0.4.7 and 0.4.17. This peak is so small because
the header only occurs in contracts that were compiled with compiler optimizations.
At distance 20, there is a peak with a different explanation. Between block 2,370,025

and 2,423,365 three spam accounts1 put 23,641 smart contracts onto the blockchain, most
1addresses 0x3898D7580aa5B8aD8a56fCd7f7Af690e97112419,

0x40525aC2Fe3bEFE27A4e73757178d4aCCfEF71dA, and
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of which have different contract codes. Our heuristic from section 6.5.1, which uses the
contract creation date to set an upper bound for the compiler version, determined compiler
version 0.4.3 for all of them as maximum version. That yields a distance of 20 and explains
the high peak.

For 1,751 contract codes our approach sets the upper and lower boundary to the same
compiler version, i.e. they have distance zero. 642 of them can be mapped to a verified
source code for evaluation. Of those, 613 (95.5%) are estimating the compiler version
correctly.

False Positives in Header Analysis

Now we have a closer look at our bytecode header analysis and evaluate each of our header
heuristics from section 6.5.2 separately. Table 7.1 lists for every one of our five identified
headers how well they estimate the specified compiler version. There are four possible
categories:

• True positives – These are contract codes having the specified header and being
compiled with the specified version.

• True negatives – They do not have the specified header and have a different
version.

• False positives – Contract codes in this category have the header but they are
compiled with a different compiler version.

• False negatives – These contract codes are compiled with the specified version,
but do not have the header.

Ideally, we would like to have only true positives and true negatives because then the
header estimation would never make mistakes. However, this is not realistic and in our
case, false negatives are not as big of a problem either. A high number of false negatives
indicates that there are contract codes with that compiler version that do not have the
specified header. Consequently, there must be other headers for that compiler version.
The amount of false negatives for the last three rows in table 7.1 are quite high because
all three are covering the compiler versions below 0.4.17. When evaluating these three
headers combined (for version ≤ 0.4.17), the number of false negatives drops to just 464,
or less than 1% of all contract codes in the evaluation set. In our estimation, these false
negatives mean that the version estimation is more conservative for them and the distance
between the minimum and maximum compiler version is higher than for true positives or
true negatives.

More severe than false negatives are false positives. In these cases, our algorithm assigns
a wrong compiler version range to contracts. The reason for most of the errors in this
category are once again nightly versions. More than three quarters of the 288 false positive
results are due to nightly versions. For two of our headers there are no false positives at all

0x1FA0e1DFa88b371fcEdf6225b3d8ad4e3baCeF0E
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Header Version True
positives

True
negatives

False
positives

False
negatives

0x60806040 ≥ 0.4.22 22,104 28,028 0 301
0x60606040526004 0.4.18 – 0.4.21 19,100 30,930 264 139
0x606060405263 0.4.7 – 0.4.17 329 42,550 2 7,552
0x606060405236 ≤ 0.4.17 7,960 41,622 22 829
0x60606040525b ≤ 0.4.17 36 41,644 0 8,753

Table 7.1: Bytecode header heuristics evaluation

and for the other three headers the total number of false positives is so low in comparison
to the total number of contract codes that these wrongly identified contract codes are
negligible.

7.2.2 SafeMath Library Usage and Version Estimation

The last result we evaluate is the usage detection of the SafeMath library and its version
estimation. For evaluation, we extract information whether a verified contract uses the
SafeMath library directly from the source code. If a source code contains a library or
contract named SafeMath or SafeMathLib, or if there is a function named add, mul,
div, sub, Add, Mul, Div, Sub, safeAdd, safeMul, safeDiv or safeSub, we state that the
contract uses the SafeMath library. Of course, this is only a heuristic, but arguably a
much better heuristic than the one described in section 6.6 with which we extract this
information from the bytecode alone. This is why we can use this heuristic to evaluate
the other one from the previous chapter. The evaluation set again consists of our 50,433
verified contract codes. Table 7.2 shows how SafeMath usage detection using the source
code correlates with usage detection by only looking at contract bytecodes. In 27 cases, our
approach detected a SafeMath library from the bytecode, but not from the source code. All
of these contract codes indeed use safe math functionality, but the code contains unusual
function names, like safeMultiply or divide. If we expanded our search keywords to
more function names, we would risk including functions that are associated with the
SafeMath library.

Source code
uses SafeMath

Does not
use SafeMath

Detected SafeMath
in bytecode

21,375
true positives

27
false positives

Did not
detect SafeMath

8,978
false negatives

20,053
true negatives

Table 7.2: SafeMath usage evaluation

The number of false negatives is with 17.8% much higher. In these cases our bytecode
heuristic fails, which can have multiple reasons. Some contracts are including the SafeMath
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library in their code without using it. As mentioned in section 6.6.1, if an internal function
from a library is not called anywhere in the contract, the bytecode of that function is
not included in the final bytecode. In that case, our bytecode heuristic from the previous
chapter is not able to detect anything, while the source code heuristic detects the existence
of the library. One example of a contract not using the included library can be found
at address 0x821cc0b6817ea2b23c87b591d72328a821edf694. Another reason for false
negatives is that we do not have every possible bytecode of compiled SafeMath functions
in our database. Under some circumstances, the compiler adds one or more additional
instructions to the bytecode of SafeMath functions that make our detection fail. It is
difficult to say how many more possible SafeMath function bytecodes there are. To
determine such bytecodes is left for future research.

SafeMath Version Distances

We do not attempt to evaluate whether the detected range of SafeMath versions of our
approach is correct because it is not possible to read the true SafeMath version number
from verified contracts on Etherscan. We only evaluate the distances of our version
estimation, similar to the compiler version distance evaluation from before. Continuing,
we now take the 48,304 total contract codes as an evaluation basis, for which we were
able to set a minimum and maximum SafeMath version. These contract codes make up
87,575 contracts. The average distance of contract codes is 4.96 with a median of 4. When
looking at all contracts, the average is 4.66 and the median is 4 as well.
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Figure 7.2: Distances of SafeMath library version estimations for contract codes

In figure 7.2 we plot the amount of contract codes for every library version distance.
There are 31 SafeMath versions, including release candidate (RC) versions, but our
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approach manages to keep all version ranges at distance 14 or below. All contract codes
with distance 14 have version 1.1.0 as minimum version and 1.12.0 as maximum version.
These were exactly the two big version number jumps of the library (from 1.0.7 to 1.1.0
and from 1.12.0 to 2.0.0 RC1), indicating substantial changes in the code. From version
1.0.0 until version 1.0.7 SafeMath implemented its own internal assert() function that is
called by the add(), mul(), and sub() function for over- and underflow checks. Starting
from the following version 1.1.0 the library uses the assert() function provided directly
by Solidity. That results in different bytecode of each math function for the two versions.
Then, with version 2.0.0 RC1, the developers of the library switched from the assert()
function to the built-in require() function2. That function compiles to slightly different
bytecode again, making all versions greater than or equal to 2.0.0 RC1 unambiguously
identifiable. Additionally, SafeMath version 2.0.0 RC1 introduced the mod() function.
Existence of the bytecode of that function is a further indicator for version 2.0.0 RC1
or above. By leveraging these changes in the SafeMath code our approach is capable of
determining a SafeMath version range of at most 14 for every contract code.

Figure 7.2 contains three other distinct peaks that we explain briefly. The range of 86%
of the contract codes with library version distance 2 is 1.1.0 – 1.3.0. That is because version
1.4.0 introduced a modified mul() function, whose bytecode differs from its predecessor.
Also, SafeMath version 1.4.0 requires Solidity compiler version 0.4.18 or higher, while
SafeMath 1.3.0 has set 0.4.11 as minimum compiler version. Next, for about half of the
contract codes with distance 4 we are estimating compiler versions 1.4.0 – 1.8.0. At version
1.9.0, there were clear changes to the add(), mul() and div() functions. Together with
the changes from version 1.4.0, this peak is explained. Finally, 99% of all contract codes
with a library distance of 7 are in the range 1.1.0 – 1.8.0. Again, this is due to the big
code changes at versions 1.1.0 and 1.9.0.
To summarize, our SafeMath version estimation detects changes in the code of the

SafeMath library. The biggest changes were at versions 1.1.0, 1.4.0, 1.9.0, and 2.0.0 RC1.

2The discussion can be found here: https://github.com/OpenZeppelin/openzeppelin-solidity/
issues/1120
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8 Conclusion and Future Work

In this chapter, we summarize the results of this thesis and give an outlook of possible
future research. Especially the conceptual model we developed can be used as a basis for
other theses and papers. Further analyses can be conducted with our database.

8.1 Conclusion

In this thesis, we extensively analyzed the Ethereum platform. To begin with, we defined
all necessary cryptographic basics, explained key concepts regarding blockchain and other
distributed ledger technologies, provided an overview of Ethereum clients, and defined
the term conceptual model. Afterwards, we gave an overview of the state-of-the-art
research about Ethereum by summarizing approximately 20 scientific papers and other
publications from this field and from related areas. Next, we answered research question 1
by developing a conceptual model of the Ethereum system. After giving an overview of
some fundamental concepts of Ethereum, we used UML class diagrams to structure the
system into the four parts “Source”, “EVM”, “Storage”, and “Ledger”. We concluded the
theoretical part of this thesis by showing correlations between the four parts.

Afterwards, we began with data acquisition for our practical analyses. With answering
research question 2, we showed what data is available for analysis and evaluated several
approaches of data extraction and storage. In the end, we used a relational database
to store smart contracts separated from contract codes. In chapter 6, we first presented
some general statistics about our data set encompassing the first 6,900,000 blocks. Then,
we addressed research questions 3, 4, and 5 with a multitude of analyses. We gave
examples of three categories of anomalies: front-running, self-destructing constructors,
and transactions to future contracts. Following, we determined real-world use-cases of
smart contracts on the Ethereum blockchain by measuring ERC standard usage and by
manually inspecting some of the most used contract codes. For our metadata analysis,
we began with extracting hard-coded addresses from contract bytecode and applying
the PageRank algorithm. In addition, we looked at most used function signatures and
accounts that created the most smart contracts and their balances.

Our main contribution is the approximation of compiler and library versions. By using
heuristics based on the contract creation date and a header analysis, we were able to set
very accurate ranges of compiler versions for arbitrary contract codes. We accurately
detected usage of the SafeMath library by compiling all library source codes with all
compatible compiler versions, extracting the bytecodes of the functions, and searching
for them in all contract codes. Our evaluation with verified source codes from Etherscan
attested that our compiler version estimation ranges are correct for 99% of all contract
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codes. The median distance of the minimum and maximum estimated version for contract
codes is 3. For SafeMath usage detection, we have a success rate of 82% with a median
distance of 4.

8.2 Future Work

There are multiple downsides of our approach of obtaining contract-created contracts.
Most importantly, we do not know the block number of when such a contract was created
and we do not retrieve all contracts. These drawbacks can be solved by using Parity
traces. Parity – in contract to Geth – is capable of tracing message calls induced by a
transaction. That means that if a transaction does not create a smart contract directly,
but causes a contract to invoke the CREATE opcode, Parity can trace that message call.
By replaying all transactions, it is possible to collect the complete list of contract-created
contracts, including their creation date. That data would then for example allow making
a statement about the distribution of contract-created ERC20 tokens over time.

Another aspect that has room for improvement is data collection for our compiler and
SafeMath version estimation. It might be possible to reduce the number of false negatives of
the SafeMath usage determination by adding more compiled SafeMath function bytecodes.
Compiling all SafeMath versions with all compatible nightly compiler versions might
further increase the accuracy of the results. However, as there are 13 times as many
nightly versions as stable versions, that approach has a lot of overhead. One could also
try to compile the libraries with with versions that are not compatible with the pragma
header in the source code of the library. Finally, more heuristics could be investigated
in order to get a better estimation of the compiler and library versions. Possibly, there
are other distinct features in the code that are unique for other compiler versions, not
necessarily only in the header of bytecodes, but for example in the function dispatcher
code.
One application of our compiler version estimation could be to find vulnerable smart

contracts. The developers of the Solidity compiler maintain a list of known bugs for older
compiler versions [59]. It might be feasible to test contracts for which we are certain that
they use an older compiler version whether they are vulnerable to one of the compiler
bugs. As smart contracts cannot be updated once they are on the blockchain, these bugs
persist. Our compiler version estimation can help to narrow down the list of possible bugs
for each contract.

Lastly, analysis of the Ethereum system can be extended to encompass not only smart
contracts, but also function calls. Metrics of interest would be for example which functions
are called most often or the average depth of nested message calls. Further, our library
detection could be extended to other libraries and the usage of more ERC standards could
be investigated.
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